Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Sep 5;45(23):2034-2041.
doi: 10.1002/jcc.27392. Epub 2024 May 11.

Ruthenium complexes bearing nile red chromophore and one of its derivative: Theoretical evaluation of PDT-related properties

Affiliations

Ruthenium complexes bearing nile red chromophore and one of its derivative: Theoretical evaluation of PDT-related properties

Pierraffaele Barretta et al. J Comput Chem. .

Abstract

The outcomes of DFT-based calculations are here reported to assess the applicability of two synthesized polypyridyl Ru(II) complexes, bearing ethynyl nile red (NR) on a bpy ligand, and two analogues, bearing modified-NR, in photodynamic therapy. The absorption spectra, together with the non-radiative rate constants for the S1 - Tn intersystem crossing transitions, have been computed for this purpose. Calculations evidence that the structural modification on the chromophore destabilizes the HOMO of the complexes thus reducing the H-L gap and, consequently, red shifting the maximum absorption wavelength within the therapeutic window, up to 620 nm. Moreover, the favored ISC process from the bright state involves the triplet state closest in energy, which is also characterized by the highest SOC value and by the involvement of the whole bpy ligand bearing the chromophore in delocalising the unpaired electrons. These outcomes show that the photophysical behavior of the complexes is dominated by the chromophore.

Keywords: PDT; TD‐DFT; intersystem spin crossing; nile red; ruthenium complexes.

PubMed Disclaimer

References

REFERENCES

    1. S. Leijen, S. A. Burgers, P. Baas, D. Pluim, M. Tibben, E. van Werkhoven, E. Alessio, G. Sava, J. H. Beijnen, J. H. M. Schellens, Investig. New Drugs 2015, 33, 201.
    1. J. M. Rademaker‐Lakhai, D. van den Bongard, D. Pluim, J. H. Beijnen, J. H. M. Schellens, Clin. Cancer Res. 2004, 10, 3717.
    1. P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, J. Golab, CA Cancer J. Clin. 2011, 61, 250.
    1. U. Chilakamarthi, L. Giribabu, Chem. Rec. 2017, 17, 775.
    1. M. Triesscheijn, P. Baas, J. H. M. Schellens, F. A. Stewart, Onco. Targets. Ther. 2006, 11, 1034.

LinkOut - more resources