Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Oct 25;73(4):666-682.
doi: 10.1093/sysbio/syae024.

Benefits and Limits of Phasing Alleles for Network Inference of Allopolyploid Complexes

Affiliations

Benefits and Limits of Phasing Alleles for Network Inference of Allopolyploid Complexes

George P Tiley et al. Syst Biol. .

Abstract

Accurately reconstructing the reticulate histories of polyploids remains a central challenge for understanding plant evolution. Although phylogenetic networks can provide insights into relationships among polyploid lineages, inferring networks may be hindered by the complexities of homology determination in polyploid taxa. We use simulations to show that phasing alleles from allopolyploid individuals can improve phylogenetic network inference under the multispecies coalescent by obtaining the true network with fewer loci compared with haplotype consensus sequences or sequences with heterozygous bases represented as ambiguity codes. Phased allelic data can also improve divergence time estimates for networks, which is helpful for evaluating allopolyploid speciation hypotheses and proposing mechanisms of speciation. To achieve these outcomes in empirical data, we present a novel pipeline that leverages a recently developed phasing algorithm to reliably phase alleles from polyploids. This pipeline is especially appropriate for target enrichment data, where the depth of coverage is typically high enough to phase entire loci. We provide an empirical example in the North American Dryopteris fern complex that demonstrates insights from phased data as well as the challenges of network inference. We establish that our pipeline (PATÉ: Phased Alleles from Target Enrichment data) is capable of recovering a high proportion of phased loci from both diploids and polyploids. These data may improve network estimates compared with using haplotype consensus assemblies by accurately inferring the direction of gene flow, but statistical nonidentifiability of phylogenetic networks poses a barrier to inferring the evolutionary history of reticulate complexes.

Keywords: Divergence time estimation; hybridization; introgression; multispecies coalescent; phylogenetic networks; polyploidy; statistical identifiability; target enrichment.

PubMed Disclaimer

LinkOut - more resources