Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2024 Jul:196:110325.
doi: 10.1016/j.radonc.2024.110325. Epub 2024 May 10.

Accuracy of machine learning in preoperative identification of genetic mutation status in lung cancer: A systematic review and meta-analysis

Affiliations
Free article
Meta-Analysis

Accuracy of machine learning in preoperative identification of genetic mutation status in lung cancer: A systematic review and meta-analysis

Jinzhan Chen et al. Radiother Oncol. 2024 Jul.
Free article

Abstract

Background and purpose: We performed this systematic review and meta-analysis to investigate the performance of ML in detecting genetic mutation status in NSCLC patients.

Materials and methods: We conducted a systematic search of PubMed, Cochrane, Embase, and Web of Science up until July 2023. We discussed the genetic mutation status of EGFR, ALK, KRAS, and BRAF, as well as the mutation status at different sites of EGFR.

Results: We included a total of 128 original studies, of which 114 constructed ML models based on radiomic features mainly extracted from CT, MRI, and PET-CT data. From a genetic mutation perspective, 121 studies focused on EGFR mutation status analysis. In the validation set, for the detection of EGFR mutation status, the aggregated c-index was 0.760 (95%CI: 0.706-0.814) for clinical feature-based models, 0.772 (95%CI: 0.753-0.791) for CT-based radiomics models, 0.816 (95%CI: 0.776-0.856) for MRI-based radiomics models, and 0.750 (95%CI: 0.712-0.789) for PET-CT-based radiomics models. When combined with clinical features, the aggregated c-index was 0.807 (95%CI: 0.781-0.832) for CT-based radiomics models, 0.806 (95%CI: 0.773-0.839) for MRI-based radiomics models, and 0.822 (95%CI: 0.789-0.854) for PET-CT-based radiomics models. In the validation set, the aggregated c-indexes for radiomics-based models to detect mutation status of ALK and KRAS, as well as the mutation status at different sites of EGFR were all greater than 0.7.

Conclusion: The use of radiomics-based methods for early discrimination of EGFR mutation status in NSCLC demonstrates relatively high accuracy. However, the influence of clinical variables cannot be overlooked in this process. In addition, future studies should also pay attention to the accuracy of radiomics in identifying mutation status of other genes in EGFR.

Keywords: Gene mutation; Machine learning; Non–small cell lung cancer; Radiomics.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

MeSH terms