Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Jun 9;382(2273):20230199.
doi: 10.1098/rsta.2023.0199. Epub 2024 May 13.

The DESTINY+ Dust Analyser - a dust telescope for analysing cosmic dust dynamics and composition

Affiliations

The DESTINY+ Dust Analyser - a dust telescope for analysing cosmic dust dynamics and composition

Jonas Simolka et al. Philos Trans A Math Phys Eng Sci. .

Abstract

The DESTINY+(Demonstration and Experiment of Space Technology for INterplanetary voYage with Phaethon fLyby and dUst Science) Dust Analyser (DDA) is a state-of-the-art dust telescope for the in situ analysis of cosmic dust particles. As the primary scientific payload of the DESTINY+ mission, it serves the purpose of characterizing the dust environment within the Earth-Moon system, investigating interplanetary and interstellar dust populations at 1 AU from the Sun and studying the dust cloud enveloping the asteroid (3200) Phaethon. DDA features a two-axis pointing platform for increasing the accessible fraction of the sky. The instrument combines a trajectory sensor with an impact ionization time-of-flight mass spectrometer, enabling the correlation of dynamical, physical and compositional properties for individual dust grains. For each dust measurement, a set of nine signals provides the surface charge, particle size, velocity vector, as well as the atomic, molecular and isotopic composition of the dust grain. With its capabilities, DDA is a key asset in advancing our understanding of the cosmic dust populations present along the orbit of DESTINY+. In addition to providing the scientific context, we are presenting an overview of the instrument's design and functionality, showing first laboratory measurements and giving insights into the observation planning. This article is part of a theme issue 'Dust in the Solar System and beyond'.

Keywords: (3200) Phaethon; DESTINY+; cosmic dust; instrumentation; interstellar dust; mass spectrometry.

PubMed Disclaimer

LinkOut - more resources