Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 May 22;26(20):14991-15004.
doi: 10.1039/d4cp01034e.

Footprints of atomic-scale features in plasmonic nanoparticles as revealed by electron energy loss spectroscopy

Affiliations

Footprints of atomic-scale features in plasmonic nanoparticles as revealed by electron energy loss spectroscopy

Mattin Urbieta et al. Phys Chem Chem Phys. .

Abstract

We present a first-principles theoretical study of the atomistic footprints in the valence electron energy loss spectroscopy (EELS) of nanometer-size metallic particles. Charge density maps of excited plasmons and EEL spectra for specific electron paths through a nanoparticle (Na380 atom cluster) are modeled using ab initio calculations within time-dependent density functional theory. Our findings unveil the atomic-scale sensitivity of EELS within this low-energy spectral range. Whereas localized surface plasmons (LSPs) are particularly sensitive to the atomistic structure of the surface probed by the electron beam, confined bulk plasmons (CBPs) reveal quantum size effects within the nanoparticle's volume. Moreover, we prove that classical local dielectric theories mimicking the atomistic structure of the nanoparticles reproduce the LSP trends observed in quantum calculations, but fall short in describing the CBP behavior observed under different electron trajectories.

PubMed Disclaimer

LinkOut - more resources