Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985;85(2):143-58.
doi: 10.1007/BF01871267.

Cell K activity in frog skin in the presence and absence of cell current

Cell K activity in frog skin in the presence and absence of cell current

J F García-Díaz et al. J Membr Biol. 1985.

Abstract

Cell K activity, acK, was measured in the short-circuited frog skin by simultaneous cell punctures from the apical surface with open-tip and K-selective microelectrodes. Strict criteria for acceptance of impalements included constancy of the open-tip microelectrode resistance, agreement within 3% of the fractional apical voltage measured with open-tip and K-selective microelectrodes, and constancy of the differential voltage recorded between the open-tip and the K microelectrodes 30-60 sec after application of amiloride or substitution of apical Na. Skins were bathed on the serosal surface with NaCl Ringer and, to reduce paracellular Cl conductance and effects of amiloride on paracellular conductance, with NaNO3 Ringer on the apical surface. Under control conditions acK was nearly constant among skins (mean +/- SD = 92 +/- 8 mM, 14 skins) in spite of a wide range of cellular currents (5 to 70 microA/cm2). Cell current (and transcellular Na transport) was inhibited by either apical addition of amiloride or substitution of Na by other cations. Although in some experiments the expected small increase in acK after inhibition of cell current was observed, on the average the change was not significant (98 +/- 11 mM after amiloride, 101 +/- 12 mM after Na substitution), even 30 min after the inhibition of cell current. The membrane potential, which in the control state ranged from -42 to -77 mV, hyperpolarized after inhibition of cell current, initially to -109 +/- 5 mV, then depolarizing to a stable value (-88 +/- 5 mV) after 15-25 min. At this time K was above equilibrium (EK = 98 +/- 2 mV), indicating that the active pump mechanism is still operating after inhibition of transcellular Na transport. The measurement of acK permitted the calculation of the passive K current and pump current under control conditions, assuming a "constant current source" with almost all of the basolateral conductance attributable to K. We found a significant correlation between pump current and cell current with a slope of 0.31, indicating that about one-third of the cell current is carried by the pump, i.e., a pump stoichiometry of 3Na/2K.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Membr Biol. 1981;61(2):127-34 - PubMed
    1. J Membr Biol. 1978;40 Spec No:91-119 - PubMed
    1. Am J Physiol. 1979 Jun;236(6):F505-12 - PubMed
    1. J Physiol. 1984 Apr;349:501-17 - PubMed
    1. Fed Proc. 1980 Sep;39(11):2851-9 - PubMed

Publication types

LinkOut - more resources