Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation

APOBEC3 mutagenesis drives therapy resistance in breast cancer

Avantika Gupta et al. bioRxiv. .

Update in

  • APOBEC3 mutagenesis drives therapy resistance in breast cancer.
    Gupta A, Gazzo A, Selenica P, Safonov A, Pareja F, da Silva EM, Brown DN, Shao H, Zhu Y, Patel J, Blanco-Heredia J, Stefanovska B, Carpenter MA, Chen Y, Vegas I, Pei X, Frosina D, Jungbluth AA, Ladanyi M, Curigliano G, Weigelt B, Riaz N, Powell SN, Razavi P, Harris RS, Reis-Filho JS, Marra A, Chandarlapaty S. Gupta A, et al. Nat Genet. 2025 Jun;57(6):1452-1462. doi: 10.1038/s41588-025-02187-1. Epub 2025 May 16. Nat Genet. 2025. PMID: 40379787 Free PMC article.

Abstract

Acquired genetic alterations commonly drive resistance to endocrine and targeted therapies in metastatic breast cancer 1-7 , however the underlying processes engendering these diverse alterations are largely uncharacterized. To identify the mutational processes operant in breast cancer and their impact on clinical outcomes, we utilized a well-annotated cohort of 3,880 patient samples with paired tumor-normal sequencing data. The mutational signatures associated with apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) enzymes were highly prevalent and enriched in post-treatment compared to treatment-naïve hormone receptor-positive (HR+) cancers. APOBEC3 mutational signatures were independently associated with shorter progression-free survival on antiestrogen plus CDK4/6 inhibitor combination therapy in patients with HR+ metastatic breast cancer. Whole genome sequencing (WGS) of breast cancer models and selected paired primary-metastatic samples demonstrated that active APOBEC3 mutagenesis promoted resistance to both endocrine and targeted therapies through characteristic alterations such as RB1 loss-of-function mutations. Evidence of APOBEC3 activity in pre-treatment samples illustrated a pervasive role for this mutational process in breast cancer evolution. The study reveals APOBEC3 mutagenesis to be a frequent mediator of therapy resistance in breast cancer and highlights its potential as a biomarker and target for overcoming resistance.

PubMed Disclaimer

Publication types

LinkOut - more resources