Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Jul 5:1726:464941.
doi: 10.1016/j.chroma.2024.464941. Epub 2024 May 3.

Enhancing LC×LC separations through multi-task Bayesian optimization

Affiliations
Free article

Enhancing LC×LC separations through multi-task Bayesian optimization

Jim Boelrijk et al. J Chromatogr A. .
Free article

Abstract

Method development in comprehensive two-dimensional liquid chromatography (LC×LC) is a challenging process. The interdependencies between the two dimensions and the possibility of incorporating complex gradient profiles, such as multi-segmented gradients or shifting gradients, make trial-and-error method development time-consuming and highly dependent on user experience. Retention modeling and Bayesian optimization (BO) have been proposed as solutions to mitigate these issues. However, both approaches have their strengths and weaknesses. On the one hand, retention modeling, which approximates true retention behavior, depends on effective peak tracking and accurate retention time and width predictions, which are increasingly challenging for complex samples and advanced gradient assemblies. On the other hand, Bayesian optimization may require many experiments when dealing with many adjustable parameters, as in LC×LC. Therefore, in this work, we investigate the use of multi-task Bayesian optimization (MTBO), a method that can combine information from both retention modeling and experimental measurements. The algorithm was first tested and compared with BO using a synthetic retention modeling test case, where it was shown that MTBO finds better optima with fewer method-development iterations than conventional BO. Next, the algorithm was tested on the optimization of a method for a pesticide sample and we found that the algorithm was able to improve upon the initial scanning experiments. Multi-task Bayesian optimization is a promising technique in situations where modeling retention is challenging, and the high number of adjustable parameters and/or limited optimization budget makes traditional Bayesian optimization impractical.

Keywords: 2D-LC; Bayesian optimization; Closed-loop method development; Machine learning; Shifting gradients.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources