Wearable Aptalyzer Integrates Microneedle and Electrochemical Sensing for In Vivo Monitoring of Glucose and Lactate in Live Animals
- PMID: 38752744
- DOI: 10.1002/adma.202313743
Wearable Aptalyzer Integrates Microneedle and Electrochemical Sensing for In Vivo Monitoring of Glucose and Lactate in Live Animals
Abstract
Continuous monitoring of clinically relevant biomarkers within the interstitial fluid (ISF) using microneedle (MN)-based assays, has the potential to transform healthcare. This study introduces the Wearable Aptalyzer, an integrated system fabricated by combining biocompatible hydrogel MN arrays for ISF extraction with an electrochemical aptamer-based biosensor for in situ monitoring of blood analytes. The use of aptamers enables continuous monitoring of a wide range of analytes, beyond what is possible with enzymatic monitoring. The Wearable Aptalyzer is used for real-time and multiplexed monitoring of glucose and lactate in ISF. Validation experiments using live mice and rat models of type 1 diabetes demonstrate strong correlation between the measurements collected from the Wearable Aptalyzer in ISF and those obtained from gold-standard techniques for blood glucose and lactate, for each analyte alone and in combination. The Wearable Aptalyzer effectively addresses the limitations inherent in enzymatic detection methods as well as solid MN biosensors and the need for reliable and multiplexed bioanalytical monitoring in vivo.
Keywords: aptamers; biosensing; electrochemistry; glucose; lactate; microneedles; wearables.
© 2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.
Similar articles
-
High-density microneedle array-based wearable electrochemical biosensor for detection of insulin in interstitial fluid.Biosens Bioelectron. 2025 Mar 1;271:116995. doi: 10.1016/j.bios.2024.116995. Epub 2024 Nov 26. Biosens Bioelectron. 2025. PMID: 39616898
-
Intradermal Lactate Monitoring Based on a Microneedle Sensor Patch for Enhanced In Vivo Accuracy.ACS Sens. 2024 Jun 28;9(6):3115-3125. doi: 10.1021/acssensors.4c00337. Epub 2024 May 22. ACS Sens. 2024. PMID: 38778463 Free PMC article.
-
Wearable hollow microneedle sensing patches for the transdermal electrochemical monitoring of glucose.Talanta. 2022 Nov 1;249:123695. doi: 10.1016/j.talanta.2022.123695. Epub 2022 Jun 16. Talanta. 2022. PMID: 35728453
-
Revolutionizing biosensing with wearable microneedle patches: innovations and applications.J Mater Chem B. 2025 May 7;13(18):5264-5289. doi: 10.1039/d5tb00251f. J Mater Chem B. 2025. PMID: 40264330 Review.
-
Microneedle-Based Glucose Sensor Platform: From Vitro to Wearable Point-of-Care Testing Systems.Biosensors (Basel). 2022 Aug 6;12(8):606. doi: 10.3390/bios12080606. Biosensors (Basel). 2022. PMID: 36005002 Free PMC article. Review.
Cited by
-
Synergizing Nanosensor-Enhanced Wearable Devices with Machine Learning for Precision Health Management Benefiting Older Adult Populations.ACS Nano. 2025 Jul 29;19(29):26273-26295. doi: 10.1021/acsnano.5c04337. Epub 2025 Jul 14. ACS Nano. 2025. PMID: 40657801 Free PMC article. Review.
-
Advances in Research of Hydrogel Microneedle-Based Delivery Systems for Disease Treatment.Pharmaceutics. 2024 Dec 9;16(12):1571. doi: 10.3390/pharmaceutics16121571. Pharmaceutics. 2024. PMID: 39771550 Free PMC article. Review.
-
Continuous High-Throughput Plasma Separation for Blood Biomarker Sensing Using a Hydrodynamic Microfluidic Device.Adv Healthc Mater. 2025 Apr;14(9):e2404193. doi: 10.1002/adhm.202404193. Epub 2025 Feb 19. Adv Healthc Mater. 2025. PMID: 39972640 Free PMC article.
-
Electrochemical Microneedles for Real-Time Monitoring in Interstitial Fluid: Emerging Technologies and Future Directions.Biosensors (Basel). 2025 Jun 12;15(6):380. doi: 10.3390/bios15060380. Biosensors (Basel). 2025. PMID: 40558462 Free PMC article. Review.
-
Effects of Physiological-Scale Variation in Cations, pH, and Temperature on the Calibration of Electrochemical Aptamer-Based Sensors.ACS Sens. 2024 Dec 27;9(12):6675-6684. doi: 10.1021/acssensors.4c02274. Epub 2024 Nov 21. ACS Sens. 2024. PMID: 39570094 Free PMC article.
References
-
- F. Tehrani, H. Teymourian, B. Wuerstle, J. Kavner, R. Patel, A. Furmidge, R. Aghavali, H. Hosseini‐Toudeshki, C. Brown, F. Zhang, K. Mahato, Z. Li, A. Barfidokht, L. Yin, P. Warren, N. Huang, Z. Patel, P. P. Mercier, J. Wang, Nat. Biomed. Eng. 2022, 6, 1214.
-
- P. C. Pandey, S. Shukla, S. A. Skoog, R. D. Boehm, R. J. Narayan, Sensors 2019, 19, 1028.
-
- N. Kashaninejad, A. Munaz, H. Moghadas, S. Yadav, M. Umer, Chemosensors 2021, 9, 83.
-
- P. GhavamiNejad, A. GhavamiNejad, H. Zheng, K. Dhingra, M. Samarikhalaj, M. Poudineh, Adv. Healthcare Mater. 2023, 12, 2202362.
-
- I. Lee, D. Probst, D. Klonoff, K. Sode, Biosens. Bioelectron. 2021, 181, 113054.
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources