A multicentric study of radiomics and artificial intelligence analysis on contrast-enhanced mammography to identify different histotypes of breast cancer
- PMID: 38755477
- DOI: 10.1007/s11547-024-01817-8
A multicentric study of radiomics and artificial intelligence analysis on contrast-enhanced mammography to identify different histotypes of breast cancer
Abstract
Objective: To evaluate the performance of radiomic analysis on contrast-enhanced mammography images to identify different histotypes of breast cancer mainly in order to predict grading, to identify hormone receptors, to discriminate human epidermal growth factor receptor 2 (HER2) and to identify luminal histotype of the breast cancer.
Methods: From four Italian centers were recruited 180 malignant lesions and 68 benign lesions. However, only the malignant lesions were considered for the analysis. All patients underwent contrast-enhanced mammography in cranium caudal (CC) and medium lateral oblique (MLO) view. Considering histological findings as the ground truth, four outcomes were considered: (1) G1 + G2 vs. G3; (2) HER2 + vs. HER2 - ; (3) HR + vs. HR - ; and (4) non-luminal vs. luminal A or HR + /HER2- and luminal B or HR + /HER2 + . For multivariate analysis feature selection, balancing techniques and patter recognition approaches were considered.
Results: The univariate findings showed that the diagnostic performance is low for each outcome, while the results of the multivariate analysis showed that better performances can be obtained. In the HER2 + detection, the best performance (73% of accuracy and AUC = 0.77) was obtained using a linear regression model (LRM) with 12 features extracted by MLO view. In the HR + detection, the best performance (77% of accuracy and AUC = 0.80) was obtained using a LRM with 14 features extracted by MLO view. In grading classification, the best performance was obtained by a decision tree trained with three predictors extracted by MLO view reaching an accuracy of 82% on validation set. In the luminal versus non-luminal histotype classification, the best performance was obtained by a bagged tree trained with 15 predictors extracted by CC view reaching an accuracy of 94% on validation set.
Conclusions: The results suggest that radiomics analysis can be effectively applied to design a tool to support physician decision making in breast cancer classification. In particular, the classification of luminal versus non-luminal histotypes can be performed with high accuracy.
Keywords: Breast cancer classification and prediction; Contrast-enhanced mammography; Machine learning; Radiomics.
© 2024. Italian Society of Medical Radiology.
References
-
- Patel BK, Lobbes M, Lewin J (2018) Contrast enhanced spectral mammography: a review. Semin Ultrasound CT MRI 39:70–79. https://doi.org/10.1053/j.sult.2017.08.005 - DOI
-
- Heywang-Köbrunner S, Viehweg P, Heinig A, Küchler C (1997) Contrast-enhanced MRI of the breast: accuracy, value, controversies, solutions. Eur J Radiol 24:94–108. https://doi.org/10.1016/s0720-048x(96)01142-4 - DOI - PubMed
-
- Satake H, Ishigaki S, Ito R, Naganawa S (2022) Radiomics in breast MRI: current progress toward clinical application in the era of artificial intelligence. Radiol Med 127(1):39–56. https://doi.org/10.1007/s11547-021-01423-y - DOI - PubMed
-
- Dromain C, Balleyguier C, Muller S, Mathieu MC, Rochard F, Opolon P, Sigal R (2006) Evaluation of tumor angiogenesis of breast carcinoma using contrast-enhanced digital mammography. AJR Am J Roentgenol 187:528–537. https://doi.org/10.2214/AJR.05.1944 - DOI
-
- Dromain C, Balleyguier C, Adler G, Garbay JR, Delalogeet S (2009) Contrast-enhanced digital mammography. Eur J Radiol 69:34–42. https://doi.org/10.1016/j.ejrad.2008.07.035 - DOI - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Research Materials
Miscellaneous