Intracellular pH in diluting segment of frog kidney
- PMID: 3875833
- DOI: 10.1007/BF00581246
Intracellular pH in diluting segment of frog kidney
Abstract
Chronic exposure to high potassium (K+ adaptation) stimulates H+ net secretion in the diluting segment of the frog kidney. In order to investigate the cellular mechanism of the H+ secretory process intracellular pH (pHi) measurements were performed in cells of the diluting segment of the isolated doubly-perfused kidney of K+ adapted Rana esculenta. pHi changes were monitored by pH-sensitive microelectrodes while the tubule lumen was rapidly perfused with various solutions. With control solutions (extracellular pH = 7.80) pHi averaged 7.60 +/- 0.05. Luminal application of furosemide (5 X 10(-5) mol/l) or reduction of luminal Cl- (from 104 mmol/l to 9 mmol/l) hyperpolarized the cell membrane potentials but pHi was not altered. Reduction of luminal Na+ (from 98 mmol/l to 3 mmol/l) depolarized the cell membrane potentials but pHi remained constant. Complete removal of luminal Na+, however, led to a significant decrease of pHi from 7.61 +/- 0.08 to 7.18 +/- 0.08. Luminal application of amiloride (1 X 10(-3) mol/l) also decreased pHi significantly (delta pHi = 0.15 +/- 0.02). The results indicate that an amiloride-sensitive H+ extrusion mechanism exists in the luminal cell membrane of the K+ adapted frog diluting segment. The data are consistent with Na+/H+ exchange which maintains a constant pHi even at extreme experimental conditions.