The localization of transport properties in the frog lens
- PMID: 3876116
- PMCID: PMC1329356
- DOI: 10.1016/S0006-3495(85)83798-X
The localization of transport properties in the frog lens
Abstract
The selectivity of fiber-cell membranes and surface-cell membranes in the frog lens is examined using a combination of ion substitutions and impedance studies. We replace bath sodium and chloride, one at a time, with less permeant substitute ions and we increase bath potassium at the expense of sodium. We then record the time course and steady-state value of the intracellular potential. Once a new steady state has been reached, we perform a small signal-frequency-domain impedance study. The impedance study allows us to separately determine the values of inner fiber-cell membrane conductance and surface-cell membrane conductance. If a membrane is permeable to a particular ion, we presume that the conductance of that membrane will change with the concentration of the permeant ion. Thus, the impedance studies allow us to localize the site of permeability to inner or surface membranes. Similarly, the time course of the change in intracellular potential will be rapid if surface membranes are the site of permeation whereas it will be slow if the new solution has to diffuse into the intercellular space to cause voltage changes. Lastly, the value of steady-state voltage change provides an estimate of the lens' permeability, at least for chloride and potassium. The results for sodium are complex and not well understood. From the above studies we conclude: (a) surface membranes are dominated by potassium permeability; (b) inner fiber-cell membranes are permeable to sodium and chloride, in approximately equal amounts; and (c) inner fiber-cell membranes have a rather small permeability to potassium.
Similar articles
-
Transport properties of the lens.Am J Physiol. 1985 Sep;249(3 Pt 1):C181-90. doi: 10.1152/ajpcell.1985.249.3.C181. Am J Physiol. 1985. PMID: 2994483 Review.
-
p-chloro-mercuriphenyl sulphonate activates a quinine-sensitive potassium conductance in frog lens.J Physiol. 1988 Oct;404:637-48. doi: 10.1113/jphysiol.1988.sp017310. J Physiol. 1988. PMID: 2473200 Free PMC article.
-
Molecular aspects of electrical excitation in lipid bilayers and cell membranes.Horiz Biochem Biophys. 1976;2:230-84. Horiz Biochem Biophys. 1976. PMID: 776770 Review.
-
Spatial variations in membrane properties in the intact rat lens.Biophys J. 1992 Aug;63(2):518-29. doi: 10.1016/S0006-3495(92)81624-7. Biophys J. 1992. PMID: 1420894 Free PMC article.
-
A comparison of ion concentrations, potentials and conductances of amphibian, bovine and cephalopod lenses.J Physiol. 1977 Oct;272(1):167-86. doi: 10.1113/jphysiol.1977.sp012039. J Physiol. 1977. PMID: 304100 Free PMC article.
Cited by
-
Steady-state voltages, ion fluxes, and volume regulation in syncytial tissues.Biophys J. 1985 Sep;48(3):435-48. doi: 10.1016/S0006-3495(85)83799-1. Biophys J. 1985. PMID: 2412605 Free PMC article.
-
A novel role for FGF and extracellular signal-regulated kinase in gap junction-mediated intercellular communication in the lens.J Cell Biol. 2001 Jul 9;154(1):197-216. doi: 10.1083/jcb.200101057. J Cell Biol. 2001. PMID: 11449001 Free PMC article.
-
Electrical signaling in control of ocular cell behaviors.Prog Retin Eye Res. 2012 Jan;31(1):65-88. doi: 10.1016/j.preteyeres.2011.10.001. Epub 2011 Oct 17. Prog Retin Eye Res. 2012. PMID: 22020127 Free PMC article. Review.
-
Single-membrane and cell-to-cell permeability properties of dissociated embryonic chick lens cells.J Membr Biol. 1992 Jun;128(2):91-102. doi: 10.1007/BF00231882. J Membr Biol. 1992. PMID: 1501244
-
A computer model of lens structure and function predicts experimental changes to steady state properties and circulating currents.Biomed Eng Online. 2013 Aug 30;12:85. doi: 10.1186/1475-925X-12-85. Biomed Eng Online. 2013. PMID: 23988187 Free PMC article.
References
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources