Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2024 Jun:188:108744.
doi: 10.1016/j.envint.2024.108744. Epub 2024 May 11.

Application of organoid technology in the human health risk assessment of microplastics: A review of progresses and challenges

Affiliations
Free article
Review

Application of organoid technology in the human health risk assessment of microplastics: A review of progresses and challenges

Jiaoyue Cong et al. Environ Int. 2024 Jun.
Free article

Abstract

Microplastic (MP) pollution has become a global environmental issue, and increasing concern has been raised about its impact on human health. Current studies on the toxic effects and mechanisms of MPs have mostly been conducted in animal models or in vitro cell cultures, which have limitations regarding inter-species differences or stimulation of cellular functions. Organoid technology derived from human pluripotent or adult stem cells has broader prospects for predicting the potential health risks of MPs to humans. Herein, we reviewed the current application advancements and opportunities for different organoids, including brain, retinal, intestinal, liver, and lung organoids, to assess the human health risks of MPs. Organoid techniques accurately simulate the complex processes of MPs and reflect phenotypes related to diseases caused by MPs such as liver fibrosis, neurodegeneration, impaired intestinal barrier and cardiac hypertrophy. Future perspectives were also proposed for technological innovation in human risk assessment of MPs using organoids, including extending the lifespan of organoids to assess the chronic toxicity of MPs, and reconstructing multi-organ interactions to explore their potential in studying the microbiome-gut-brainaxis effect of MPs.

Keywords: Future perspective; Human organoid; Mechanism; Microplastic; Risk assessment; Toxicity process.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources