Elastic constants of biogenic calcium carbonate
- PMID: 38762971
- DOI: 10.1016/j.jmbbm.2024.106570
Elastic constants of biogenic calcium carbonate
Erratum in
-
Corrigendum to "Elastic constants of biogenic calcium carbonate" (155), 106570.J Mech Behav Biomed Mater. 2025 Jan;161:106831. doi: 10.1016/j.jmbbm.2024.106831. Epub 2024 Nov 23. J Mech Behav Biomed Mater. 2025. PMID: 39580268 No abstract available.
Abstract
Living organisms form complex mineralized composite architectures that perform a variety of essential functions. These materials are commonly utilized for load-bearing purposes such as structural stability and mechanical strength in combination with high toughness and deformability, which are well demonstrated in various highly mineralized molluscan shell ultrastructures. Here, the mineral components provide the general stiffness to the composites, and the organic interfaces play a key role in providing these biogenic architectures with mechanical superiority. Although numerous studies employed state-of-the-art methods to measure and/or model and/or simulate the mechanical behavior of molluscan shells, our understanding of their performance is limited. This is partially due to the lack of the most fundamental knowledge of their mechanical characteristics, particularly, the anisotropic elastic properties of the mineral components and of the tissues they form. In fact, elastic constants of biogenic calcium carbonate, one of the most common biominerals in nature, is unknown for any organism. In this work, we employ the ultrasonic pulse-echo method to report the elasticity tensor of two common ultrastructural motifs in molluscan shells: the prismatic and the nacreous architectures made of biogenic calcite and aragonite, respectively. The outcome of this research not only provides information necessary for fundamental understanding of biological materials formation and performance, but also yields textbook knowledge on biogenic calcium carbonate required for future structural/crystallographic, theoretical and computational studies.
Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Igor Zlotnikov reports financial support was provided by TU Dresden. If there are other authors, they declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources