Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
[Preprint]. 2024 May 9:2024.05.09.593381.
doi: 10.1101/2024.05.09.593381.

A Translaminar Spacetime Code Supports Touch-Evoked Traveling Waves

A Translaminar Spacetime Code Supports Touch-Evoked Traveling Waves

Daniel L Gonzales et al. bioRxiv. .

Update in

Abstract

Linking sensory-evoked traveling waves to underlying circuit patterns is critical to understanding the neural basis of sensory perception. To form this link, we performed simultaneous electrophysiology and two-photon calcium imaging through transparent NeuroGrids and mapped touch-evoked cortical traveling waves and their underlying microcircuit dynamics. In awake mice, both passive and active whisker touch elicited traveling waves within and across barrels, with a fast early component followed by a variable late wave that lasted hundreds of milliseconds post-stimulus. Strikingly, late-wave dynamics were modulated by stimulus value and correlated with task performance. Mechanistically, the late wave component was i) modulated by motor feedback, ii) complemented by a sparse ensemble pattern across layer 2/3, which a balanced-state network model reconciled via inhibitory stabilization, and iii) aligned to regenerative Layer-5 apical dendritic Ca 2+ events. Our results reveal a translaminar spacetime pattern organized by cortical feedback in the sensory cortex that supports touch-evoked traveling waves.

Graphical abstract and highlights: Whisker touch evokes both early- and late-traveling waves in the barrel cortex over 100's of millisecondsReward reinforcement modulates wave dynamics Late wave emergence coincides with network sparsity in L23 and time-locked L5 dendritic Ca 2+ spikes Experimental and computational results link motor feedback to distinct translaminar spacetime patterns.

PubMed Disclaimer

Publication types

LinkOut - more resources