Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Jul 1:258:121757.
doi: 10.1016/j.watres.2024.121757. Epub 2024 May 10.

Molecular and microbial insights towards anaerobic biodegradation of anionic polyacrylamide in oil sands tailings

Affiliations

Molecular and microbial insights towards anaerobic biodegradation of anionic polyacrylamide in oil sands tailings

Jia Li et al. Water Res. .

Abstract

Anionic polyacrylamide (A-PAM) is widely used as a flocculant in the management of oil sands tailings. Nevertheless, apprehensions arise regarding its potential biodegradation and environmental consequences within the context of oil sands tailings. Consequently, it is imperative to delve into the anaerobic biodegradation of A-PAM in oil sands tailings to gain a comprehensive understanding of its influence on tailings water quality. This work explored the dynamics of A-PAM biodegradation across concentrations: 50, 100, 250, 500, 1000, and 2000 mg/kg TS. The results showed a significant decrease in A-PAM concentration and molecular weight at lower concentrations (50 and 100 mg/kg TS) compared to higher ones, suggesting enhanced degradation efficiency. Likewise, the organic transformation and methane production exhibited dependency on A-PAM concentrations. The peak concentrations observed were 20.0 mg/L for volatile fatty acids (VFAs), 0.07 mg/L for acrylamide (AMD), and 8.9 mL for methane yield, with these maxima being recorded at 50 mg/kg TS. The biodegradation efficiency diminishes at higher concentrations of A-PAM, potentially due to the inhibitory effects of polyacrylic acid accumulation. A-PAM biodegradation under anaerobic condition did not contribute to acute toxicity or genotoxicity. SEM-EDS, FT-IR and XRD analyses further revealed that higher concentrations of A-PAM inhibited the biodegradation by altering floc structure and composition, thereby restricting the microbial activity. Major microorganisms, including Smithella, Candidatus_Cloacimonas, W5, XBB1006, and DMER64 were identified, highlighting A-PAM's dual role as a source of carbon and nitrogen under anaerobic conditions. The above findings from this research not only significantly advance understanding of A-PAM's environmental behavior but also contribute to the effective management practices in oil sands tailings.

Keywords: Acrylamide; Anaerobic biodegradation; Anionic polyacrylamide; Methane production; Oil sands tailings; Toxicity.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources