Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Jul:200:114333.
doi: 10.1016/j.ejpb.2024.114333. Epub 2024 May 18.

Nucleotides as new co-formers in co-amorphous systems: Enhanced dissolution rate, water solubility and physical stability

Affiliations

Nucleotides as new co-formers in co-amorphous systems: Enhanced dissolution rate, water solubility and physical stability

Xianzhi Liu et al. Eur J Pharm Biopharm. 2024 Jul.

Abstract

Developing co-amorphous systems is an attractive strategy to improve the dissolution rate of poorly water-soluble drugs. Various co-formers have been investigated. However, previous studies revealed that it is a challenge to develop satisfied acidic co-formers, e.g., acidic amino acids showed much poorer co-former properties than neutral and basic amino acids. Only a few acidic co-formers have been reported, such as aspartic acid, glutamic acid, and some other organic acids. Thus, this study aims to explore the possibility of adenosine monophosphate and adenosine diphosphate used as acidic co-formers. Mebendazole, celecoxib and tadalafil were used as the model drugs. The drug-co-former co-amorphous systems were prepared via ball milling and confirmed using XRPD. The dissolution study suggested that the solubility and dissolution rate of the drug-co-formers systems were increased significantly compared to the corresponding crystalline and amorphous drugs. The stability study revealed that using the two nucleotides as co-formers enhanced the physical stability of pure amorphous drugs. Molecular interactions were observed in MEB-co-former and TAD-co-former systems and positively affected the pharmaceutical performance of the investigated co-amorphous systems. In conclusion, the two nucleotides could be promising potential acidic co-formers for co-amorphous systems.

Keywords: Co-amorphous systems; Dissolution rate; Nucleotides; Physical stability; Poorly water-soluble drugs.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources