Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2024 Jun:244:107772.
doi: 10.1016/j.toxicon.2024.107772. Epub 2024 May 18.

A review on snake venom extracellular vesicles: Past to present

Affiliations
Free article
Review

A review on snake venom extracellular vesicles: Past to present

Nagendra K et al. Toxicon. 2024 Jun.
Free article

Abstract

Around 95% of snake venom is protein. Along with the soluble proteins, snake venom also contains proteins encapsulated in vesicles known as Snake Venom Extracellular Vesicles (SVEV). SVEVs are nano-sized membrane-bound vesicles released from the snake venom gland cells. The available published research works on SVEVs are minimal. Extracellular vesicles in the Snake Venom gland were initially discovered during the histopathological analysis of the Crotalus durissus terrificus snakes' venom gland. Later, various techniques were employed to isolate and characterize the SVEVs. The cargo of SVEV consists of a variety of proteins like Phospholipase A-2, C-type Lectins, L-Amino Acid Oxidase, Cysteine-Rich Secretory Proteins, Serine Proteinases, Dipeptidyl Peptidase-IV, Aminopeptidase-A, Ecto-5'-nucleotidases, Disintegrins. Proteomic data revealed the presence of some exclusive proteins in the SVEVs, and the other proteins are in varying concentrations in the SVEVs compared to their whole Venom. Interaction of SVEVs with mammalian cell lines showed the disruption of primary physiological functions leads to host immune modulation, and long-term effects of envenoming. Snakebite victim's blood showed variations in the specific Extracellular vesicle concentration. It has been hypothesized that SVEVs are responsible for long-term toxicity. The current review focuses on the various techniques adopted to isolate and characterize SVEVs and discusses the exclusiveness and variations of SVEV proteins and their role in snakebites.

Keywords: Snake venom; Snake venom extracellular vesicles; Snake venom toxins; Snakebite burden; Venomics.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest We hereby declare that none of the authors of this review titled “A Review on Snake Venom Extracellular Vesicles: Past to Present” have any conflict of Interest.

LinkOut - more resources