Cu1-Fe Dual Sites for Superior Neutral Ammonia Electrosynthesis from Nitrate
- PMID: 38771293
- DOI: 10.1002/anie.202406046
Cu1-Fe Dual Sites for Superior Neutral Ammonia Electrosynthesis from Nitrate
Abstract
The electrochemical nitrate reduction reaction (NO3RR) is able to convert nitrate (NO3 -) into reusable ammonia (NH3), offering a green treatment and resource utilization strategy of nitrate wastewater and ammonia synthesis. The conversion of NO3 - to NH3 undergoes water dissociation to generate active hydrogen atoms and nitrogen-containing intermediates hydrogenation tandemly. The two relay processes compete for the same active sites, especially under pH-neutral condition, resulting in the suboptimal efficiency and selectivity in the electrosynthesis of NH3 from NO3 -. Herein, we constructed a Cu1-Fe dual-site catalyst by anchoring Cu single atoms on amorphous iron oxide shell of nanoscale zero-valent iron (nZVI) for the electrochemical NO3RR, achieving an impressive NO3 - removal efficiency of 94.8 % and NH3 selectivity of 99.2 % under neutral pH and nitrate concentration of 50 mg L-1 NO3 --N conditions, greatly surpassing the performance of nZVI counterpart. This superior performance can be attributed to the synergistic effect of enhanced NO3 - adsorption on Fe sites and strengthened water activation on single-atom Cu sites, decreasing the energy barrier for the rate-determining step of *NO-to-*NOH. This work develops a novel strategy of fabricating dual-site catalysts to enhance the electrosynthesis of NH3 from NO3 -, and presents an environmentally sustainable approach for neutral nitrate wastewater treatment.
Keywords: Ammonia Recovery; Dual sites; Nitrate Electroreduction; Nitrate-pollution Treatment; Single Atom Copper.
© 2024 Wiley-VCH GmbH.
Similar articles
-
Isolated Copper Atoms Boost *NO3 Adsorption and Active Hydrogen Retention over Zinc Oxide for Ammonia Electrosynthesis at Ampere-Level Current Densities.J Am Chem Soc. 2025 Jun 4;147(22):18737-18746. doi: 10.1021/jacs.5c01863. Epub 2025 May 21. J Am Chem Soc. 2025. PMID: 40400257
-
Tuning the Oxidation State of Cu Electrodes for Selective Electrosynthesis of Ammonia from Nitrate.ACS Appl Mater Interfaces. 2021 Nov 10;13(44):52469-52478. doi: 10.1021/acsami.1c10946. Epub 2021 Nov 1. ACS Appl Mater Interfaces. 2021. PMID: 34723479
-
Breaking Linear Scaling Relation Limitations on a Dual-Driven Single-Atom Copper-Tungsten Oxide Catalyst for Ammonia Synthesis.Angew Chem Int Ed Engl. 2025 May;64(21):e202423154. doi: 10.1002/anie.202423154. Epub 2025 Mar 20. Angew Chem Int Ed Engl. 2025. PMID: 40055958
-
Valorizing Nitrate in Electrochemical Nitrogen Cycling: Copper-Based Catalysts from Reduction to C-N Coupling.Small. 2025 May;21(20):e2500833. doi: 10.1002/smll.202500833. Epub 2025 Mar 30. Small. 2025. PMID: 40159784 Review.
-
Nitrate Electroreduction to Ammonia Over Copper-based Catalysts.ChemSusChem. 2025 May 5;18(9):e202402331. doi: 10.1002/cssc.202402331. Epub 2025 Jan 3. ChemSusChem. 2025. PMID: 39676306 Review.
Cited by
-
Multivariate covalent organic frameworks with tailored electrostatic potential promote nitrate electroreduction to ammonia in acid.Nat Commun. 2025 Apr 19;16(1):3717. doi: 10.1038/s41467-025-59052-2. Nat Commun. 2025. PMID: 40253373 Free PMC article.
-
Modulating Iron Crystals with Lattice Chalcophile-Siderophile Elements for Selective Dechlorinations Over Hydrogen Evolution.Adv Sci (Weinh). 2025 May;12(17):e2416663. doi: 10.1002/advs.202416663. Epub 2025 Mar 7. Adv Sci (Weinh). 2025. PMID: 40052224 Free PMC article.
-
Cu-Co Dual Sites Tandem Synergistic Effect Boosting Neutral Low Concentration Nitrate Electroreduction to Ammonia.Adv Sci (Weinh). 2025 Apr;12(14):e2416386. doi: 10.1002/advs.202416386. Epub 2025 Feb 17. Adv Sci (Weinh). 2025. PMID: 39962744 Free PMC article.
-
Ampere-level reduction of pure nitrate by electron-deficient Ru with K+ ions repelling effect.Nat Commun. 2024 Dec 30;15(1):10877. doi: 10.1038/s41467-024-55230-w. Nat Commun. 2024. PMID: 39738159 Free PMC article.
References
-
- None
-
- Y. Lv, S. W. Ke, Y. Gu, B. Tian, L. Tang, P. Ran, Y. Zhao, J. Ma, J. L. Zuo, M. Ding, Angew. Chem. Int. Ed. 2023, e202305246;
-
- L. Mi, Q. Huo, J. Cao, X. Chen, H. Yang, Q. Hu, C. He, Adv. Energy Mater. 2022, 12, 2202247;
-
- M. Xie, S. Tang, Z. Li, M. Wang, Z. Jin, P. Li, X. Zhan, H. Zhou, G. Yu, J. Am. Chem. Soc. 2023, 145(25), 13957–13967;
-
- M. J. Askari, J. D. Kallick, C. C. L. McCrory, J. Am. Chem. Soc. 2024, 146, 7439–7455.
Grants and funding
- U20A20129/National Natural Science Foundation of China
- 22276068/National Natural Science Foundation of China
- 21876058/National Natural Science Foundation of China
- 22076061/National Natural Science Foundation of China
- 21936003/National Natural Science Foundation of China
- U21A20286/National Natural Science Foundation of China
- 22206054/National Natural Science Foundation of China
- 22306119/National Natural Science Foundation of China
- U21A2039/National Natural Science Foundation of China
- 2023BCB103/Hebei Provincial Key Research Projects
- CCNU22JC013/Fundamental Research Funds for the Central Universities
- CCNU24JCPT012/Fundamental Research Funds for the Central Universities
LinkOut - more resources
Full Text Sources