Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1979 Dec 25;254(24):12542-6.

Ca2+-dependent protein phosphorylation of purely cholinergic Torpedo synaptosomes

  • PMID: 387788
Free article

Ca2+-dependent protein phosphorylation of purely cholinergic Torpedo synaptosomes

D M Michaelson et al. J Biol Chem. .
Free article

Abstract

Preincubation of intact, purely cholinergic Torpedo synaptosomes with [32P]Pi results in the incorporation of 32P into about 10 specific proteins. Depolarizing the Torpedo synaptosomes by a high K+ buffer or treatment with the Ca2+ ionophore A23187 result in Ca2+ uptake, in acetylcholine (ACh) release, and in a marked increase of 32P incorporation into a specific protein band with an apparent subunit molecular weight of 100,000 (band alpha). The kinetics of synaptosomal 45Ca2+ uptake, of 32P incorporation into band alpha, and of ACh release is similar and reach maximal values about 45 s after the synaptosomes have been treated. Sr2+ and Ba2+ can replace Ca2+ in evoking both K+ depolarization-dependent ACh release and 32P incorporation into band alpha. The effectiveness of these ions (Ca2+ greater than Sr2+ greater than Ba2+) is similar in both cases. The data presented suggest that Ca2+ accumulation by Torpedo synaptosomes leads to an increase in the phosphorylation of a specific protein and to ACh release. This phosphoprotein may be involved in the regulation of presynaptic processes which underly ACh release.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources