Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2024 Aug 14;26(8):1281-1294.
doi: 10.1039/d4em00041b.

The impact of nTiO2 and GO (graphene oxide), and their combinations, on freshwater Chlorella sp.: a comparative study in lake water and BG-11 media

Affiliations
Comparative Study

The impact of nTiO2 and GO (graphene oxide), and their combinations, on freshwater Chlorella sp.: a comparative study in lake water and BG-11 media

Camil Rex M et al. Environ Sci Process Impacts. .

Abstract

Titanium dioxide nanoparticles (nTiO2) and graphene oxide (GO) are extensively used nanomaterials in various products and applications. Freshwater ecosystems are a crucial sink for these pollutants, posing severe threats to aquatic organisms. Although multiple studies have investigated the pristine toxicity of nTiO2 and GO in freshwater organisms, the combined toxicity of these materials remains unexplored. Interaction media is a crucial factor in evaluating toxicity nanomaterial toxicity towards algae. In this study, we have investigated the comparative effect of sterilized and filtered freshwater and BG-11 medium on the pristine and combined toxicity of nTiO2 and GO on freshwater algae Chlorella sp. Results indicated that the combination of nTiO2 and GO showed more toxicity when compared to their respective pristine forms. This could be due to the additive effect exhibited by nTiO2 and GO on Chlorella sp. The enhanced growth inhibition for the combined toxicity was in the order of 1 mg L-1 nTiO2 + 1 mg L-1 GO > 1 mg L-1 nTiO2 + 0.1 mg L-1 GO > 0.1 mg L-1 nTiO2 + 1 mg L-1 GO > 0.1 mg L-1 nTiO2 + 0.1 mg L-1 GO. All test groups that interacted in BG-11 media exhibited less toxicity when compared to corresponding groups in the lake water medium. This could be attributed to the cushioning effect of BG-11 medium, providing supplementary nutrition to the algal cells. This signifies that the environmentally relevant conditions could be more detrimental than the laboratory conditions. This study elucidates valuable insights into the potential detrimental effects associated with the combination of nTiO2 and GO on freshwater algae. Furthermore, we have evaluated the growth inhibition, oxidative stress, and photosynthetic activity of Chlorella sp. in both environmentally relevant interaction medium and well-defined culture medium.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources