Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Jan;55(1):18-28.
doi: 10.1007/s00595-024-02869-z. Epub 2024 May 23.

Preoperative evaluation of visceral pleural invasion in peripheral lung cancer utilizing deep learning technology

Affiliations

Preoperative evaluation of visceral pleural invasion in peripheral lung cancer utilizing deep learning technology

Yujin Kudo et al. Surg Today. 2025 Jan.

Abstract

Purpose: This study aimed to assess the efficiency of artificial intelligence (AI) in the detection of visceral pleural invasion (VPI) of lung cancer using high-resolution computed tomography (HRCT) images, which is challenging for experts because of its significance in T-classification and lymph node metastasis prediction.

Methods: This retrospective analysis was conducted on preoperative HRCT images of 472 patients with stage I non-small cell lung cancer (NSCLC), focusing on lesions adjacent to the pleura to predict VPI. YOLOv4.0 was utilized for tumor localization, and EfficientNetv2 was applied for VPI prediction with HRCT images meticulously annotated for AI model training and validation.

Results: Of the 472 lung cancer cases (500 CT images) studied, the AI algorithm successfully identified tumors, with YOLOv4.0 accurately localizing tumors in 98% of the test images. In the EfficientNet v2-M analysis, the receiver operating characteristic curve exhibited an area under the curve of 0.78. It demonstrated powerful diagnostic performance with a sensitivity, specificity, and precision of 76.4% in VPI prediction.

Conclusion: AI is a promising tool for improving the diagnostic accuracy of VPI for NSCLC. Furthermore, incorporating AI into the diagnostic workflow is advocated because of its potential to improve the accuracy of preoperative diagnosis and patient outcomes in NSCLC.

Keywords: Artificial intelligence; Deep learning; Lung cancer; Sublobar resection; Visceral pleural invasion.

PubMed Disclaimer

Conflict of interest statement

Declarations. Conflict of interest: The authors declare no conflicts of interest.

References

    1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49. - DOI - PubMed
    1. Travis WD, et al. Visceral pleural invasion: pathologic criteria and use of elastic stains: proposal for the 7th edition of the TNM classification for lung cancer. J Thorac Oncol. 2008;3:1384–90. - DOI - PubMed
    1. Rami-Porta R, Bolejack V, Crowley J, Ball D, Kim J, Lyons G, et al. The IASLC Lung Cancer Staging Project: proposals for the revisions of the T descriptors in the forthcoming eighth edition of the TNM classification for lung cancer. J Thorac Oncol. 2015;10(7):990–1003. - DOI - PubMed
    1. Saji H, Okada M, Tsuboi M, Nakajima R, Suzuki K, Aokage K, et al. Segmentectomy versus lobectomy in small-sized peripheral non-small-cell lung cancer (JCOG0802/WJOG4607L): a multicentre, open-label, phase 3, randomised, controlled, non-inferiority trial. Lancet. 2022;399(10335):1607–17. - DOI - PubMed
    1. Altorki N, Wang X, Kozono D, Watt C, Landrenau R, Wigle D, et al. Lobar or sublobar resection for peripheral stage IA non-small-cell lung cancer. N Engl J Med. 2023;388(6):489–98. - DOI - PubMed - PMC

MeSH terms