Automated 3D cytoplasm segmentation in soft X-ray tomography
- PMID: 38784019
- PMCID: PMC11112332
- DOI: 10.1016/j.isci.2024.109856
Automated 3D cytoplasm segmentation in soft X-ray tomography
Abstract
Cells' structure is key to understanding cellular function, diagnostics, and therapy development. Soft X-ray tomography (SXT) is a unique tool to image cellular structure without fixation or labeling at high spatial resolution and throughput. Fast acquisition times increase demand for accelerated image analysis, like segmentation. Currently, segmenting cellular structures is done manually and is a major bottleneck in the SXT data analysis. This paper introduces ACSeg, an automated 3D cytoplasm segmentation model. ACSeg is generated using semi-automated labels and 3D U-Net and is trained on 43 SXT tomograms of immune T cells, rapidly converging to high-accuracy segmentation, therefore reducing time and labor. Furthermore, adding only 6 SXT tomograms of other cell types diversifies the model, showing potential for optimal experimental design. ACSeg successfully segmented unseen tomograms and is published on Biomedisa, enabling high-throughput analysis of cell volume and structure of cytoplasm in diverse cell types.
Keywords: Artificial intelligence; Cell biology.
© 2024 The Author(s).
Conflict of interest statement
The authors declare no competing interests.
Figures







Similar articles
-
3D surface reconstruction of cellular cryo-soft X-ray microscopy tomograms using semisupervised deep learning.Proc Natl Acad Sci U S A. 2023 Jun 13;120(24):e2209938120. doi: 10.1073/pnas.2209938120. Epub 2023 Jun 5. Proc Natl Acad Sci U S A. 2023. PMID: 37276395 Free PMC article.
-
Soft X-Ray Tomography Has Evolved into a Powerful Tool for Revealing Cell Structures.Annu Rev Anal Chem (Palo Alto Calif). 2025 May;18(1):427-446. doi: 10.1146/annurev-anchem-071124-093849. Epub 2025 Mar 3. Annu Rev Anal Chem (Palo Alto Calif). 2025. PMID: 40030074 Review.
-
Contour, a semi-automated segmentation and quantitation tool for cryo-soft-X-ray tomography.Biol Imaging. 2022 May 17;2:e3. doi: 10.1017/S2633903X22000046. eCollection 2022. Biol Imaging. 2022. PMID: 35600903 Free PMC article.
-
Imaging and characterizing cells using tomography.Arch Biochem Biophys. 2015 Sep 1;581:111-21. doi: 10.1016/j.abb.2015.01.011. Epub 2015 Jan 17. Arch Biochem Biophys. 2015. PMID: 25602704 Free PMC article. Review.
-
Dehydration as alternative sample preparation for soft X-ray tomography.J Microsc. 2023 Sep;291(3):248-255. doi: 10.1111/jmi.13214. Epub 2023 Jul 18. J Microsc. 2023. PMID: 37433616
Cited by
-
Subcellular Feature-Based Classification of α and β Cells Using Soft X-ray Tomography.Cells. 2024 May 18;13(10):869. doi: 10.3390/cells13100869. Cells. 2024. PMID: 38786091 Free PMC article.
-
Soft X-ray tomography analysis of mitochondria dynamics in Saccharomyces cerevisiae.Biol Direct. 2024 Nov 29;19(1):126. doi: 10.1186/s13062-024-00570-2. Biol Direct. 2024. PMID: 39614383 Free PMC article.
-
How many specimens make a sufficient training set for automated three-dimensional feature extraction?R Soc Open Sci. 2024 Jun 19;11(6):rsos.240113. doi: 10.1098/rsos.240113. eCollection 2024 Jun. R Soc Open Sci. 2024. PMID: 39100182 Free PMC article.
-
A scoping study of the whole-cell imaging literature: a foundational corpus, potential for mesoscale data synthesis, and implications for standardization of an emerging field.bioRxiv [Preprint]. 2025 Apr 5:2025.02.03.636363. doi: 10.1101/2025.02.03.636363. bioRxiv. 2025. PMID: 39975100 Free PMC article. Preprint.
References
-
- Darrow M.C., Zhang Y., Cinquin B.P., Smith E.A., Boudreau R., Rochat R.H., Schmid M.F., Xia Y., Larabell C.A., Chiu W. Visualizing red blood cell sickling and the effects of inhibition of sphingosine kinase 1 using soft X-ray tomography. J. Cell Sci. 2016;129:3511–3517. doi: 10.1242/jcs.189225. - DOI - PMC - PubMed
LinkOut - more resources
Full Text Sources