Empagliflozin attenuates doxorubicin-induced cardiotoxicity by inhibiting the JNK signaling pathway
- PMID: 38788603
- DOI: 10.1016/j.biopha.2024.116759
Empagliflozin attenuates doxorubicin-induced cardiotoxicity by inhibiting the JNK signaling pathway
Abstract
Background: Sodium-glucose cotransporter-2 inhibitors, such as empagliflozin, are pivotal therapies for heart failure. However, the effect of empagliflozin on doxorubicin-related cardiac dysfunction remains unclear.
Methods: Human induced pluripotent stem cell- and embryonic stem cell-derived cardiomyocytes were used to investigate the direct effect of empagliflozin on human cardiomyocytes. Then, the c-Jun amino-terminal kinases (JNK) inhibitor SP600125 was administered to the doxorubicin cardiotoxicity model in vitro and in vivo to investigate the role of JNK in empagliflozin.
Results: In human stem cell-derived cardiomyocytes, pretreatment with empagliflozin attenuated doxorubicin-induced cleavage of caspase 3 and other apoptosis markers. Empagliflozin significantly attenuated doxorubicin-induced phosphorylation of JNK and p38. Inhibiting the phosphorylation of JNK (SP600125) or STAT3 attenuated doxorubicin-induced apoptosis, but inhibiting the phosphorylation of p38 did not. SP600125 inhibits the phosphorylation of STAT3 (S727), and a STAT3 (Y705) inhibitor also inhibits the phosphorylation of JNK. Empagliflozin and SP600125 attenuated doxorubicin-induced increases in reactive oxygen species (ROS) and decreases in oxidized nicotinamide adenine dinucleotide (NAD+). In animal studies, empagliflozin and SP600125 attenuated doxorubicin-induced cardiac dysfunction and fibrosis.
Conclusions: Empagliflozin attenuated doxorubicin-induced apoptosis by inhibiting the phosphorylation of JNK and its downstream signaling pathways, including ROS and NAD+.
Keywords: Cardiotoxicity; Doxorubicin; Empagliflozin; Human embryonic stem cell-derived cardiomyocytes; Human induced pluripotent stem cell-derived cardiomyocyte; JNK; SGLT2 inhibitor; hiPSC-CM.
Copyright © 2024 The Authors. Published by Elsevier Masson SAS.. All rights reserved.
Conflict of interest statement
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
MeSH terms
Substances
LinkOut - more resources
Research Materials