Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Jul:176:116759.
doi: 10.1016/j.biopha.2024.116759. Epub 2024 May 23.

Empagliflozin attenuates doxorubicin-induced cardiotoxicity by inhibiting the JNK signaling pathway

Affiliations

Empagliflozin attenuates doxorubicin-induced cardiotoxicity by inhibiting the JNK signaling pathway

Hsien-Yuan Chang et al. Biomed Pharmacother. 2024 Jul.

Abstract

Background: Sodium-glucose cotransporter-2 inhibitors, such as empagliflozin, are pivotal therapies for heart failure. However, the effect of empagliflozin on doxorubicin-related cardiac dysfunction remains unclear.

Methods: Human induced pluripotent stem cell- and embryonic stem cell-derived cardiomyocytes were used to investigate the direct effect of empagliflozin on human cardiomyocytes. Then, the c-Jun amino-terminal kinases (JNK) inhibitor SP600125 was administered to the doxorubicin cardiotoxicity model in vitro and in vivo to investigate the role of JNK in empagliflozin.

Results: In human stem cell-derived cardiomyocytes, pretreatment with empagliflozin attenuated doxorubicin-induced cleavage of caspase 3 and other apoptosis markers. Empagliflozin significantly attenuated doxorubicin-induced phosphorylation of JNK and p38. Inhibiting the phosphorylation of JNK (SP600125) or STAT3 attenuated doxorubicin-induced apoptosis, but inhibiting the phosphorylation of p38 did not. SP600125 inhibits the phosphorylation of STAT3 (S727), and a STAT3 (Y705) inhibitor also inhibits the phosphorylation of JNK. Empagliflozin and SP600125 attenuated doxorubicin-induced increases in reactive oxygen species (ROS) and decreases in oxidized nicotinamide adenine dinucleotide (NAD+). In animal studies, empagliflozin and SP600125 attenuated doxorubicin-induced cardiac dysfunction and fibrosis.

Conclusions: Empagliflozin attenuated doxorubicin-induced apoptosis by inhibiting the phosphorylation of JNK and its downstream signaling pathways, including ROS and NAD+.

Keywords: Cardiotoxicity; Doxorubicin; Empagliflozin; Human embryonic stem cell-derived cardiomyocytes; Human induced pluripotent stem cell-derived cardiomyocyte; JNK; SGLT2 inhibitor; hiPSC-CM.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

MeSH terms

LinkOut - more resources