Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Nov;23(6):1167-1172.
doi: 10.1016/j.jcf.2024.05.004. Epub 2024 May 24.

Tezacaftor is a direct inhibitor of sphingolipid delta-4 desaturase enzyme (DEGS)

Affiliations
Free article

Tezacaftor is a direct inhibitor of sphingolipid delta-4 desaturase enzyme (DEGS)

Dinu Zinovie Ciobanu et al. J Cyst Fibros. 2024 Nov.
Free article

Abstract

Background: We recently demonstrated that 48 h exposure of primary human bronchial epithelial (hBE) cells, obtained from both CF (F508del homozygous) and non-CF subjects, to the triple drug combination Elexacaftor/Tezacaftor/Ivacaftor (ETI) results in a CFTR genotype-independent modulation of the de novo synthethic pathway of sphingolipids, with an accumulation of dihydroceramides (dHCer). Since dHCer are converted into ceramides (Cer) by the action of a delta-4 sphingolipid desaturase (DEGS) enzyme, we aimed to better understand this off-target effect of ETI (i.e., not related to CFTR rescue) METHODS: hBE cells, both F508del and wild-type, were cultured to create fully differentiated bronchial epithelia. We analyzed Cer and dHCer using an LC-MS based method previously developed by our lab. DEGS expression levels in differentiated hBE cells lysates were quantified by western blot analysis.

Results: We demonstrated that 1) dHCer accumulate in hBE with time following prolonged ETI exposure, that 2) similar inhibition occurs in wild-type primary human hepatocytes and that 3) this does not result in an alteration of DEGS expression. We then proved that 4) ETI is a direct inhibitor of DEGS, that 5) Tezacaftor is the molecule responsible for this effect, that 6) the inhibition is concentration dependent. Finally, after repeated oral administration of ETI to naïve, non-CF, mice, we observed a slight accumulation of dHCer in the brain.

Conclusions: We believe that further investigations on Tezacaftor should be envisaged, particularly for the use of ETI during pregnancy, breastfeeding and in the early stages of development. DEGS dysfunction and dHCer accumulation causes impairment in the development of the nervous system, due to a derangement in myelin formation and maintenance.

Keywords: Cystic fibrosis; Dihydroceramides; ETI; Myelin; Tezacaftor.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The Authors declare that no conflict of interest exists.

MeSH terms