Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Feb;48(1):212-222.
doi: 10.1007/s10753-024-02059-6. Epub 2024 May 25.

Screening and Identification of Neutrophil Extracellular Trap-related Diagnostic Biomarkers for Pediatric Sepsis by Machine Learning

Affiliations

Screening and Identification of Neutrophil Extracellular Trap-related Diagnostic Biomarkers for Pediatric Sepsis by Machine Learning

Genhao Zhang et al. Inflammation. 2025 Feb.

Abstract

Neutrophil extracellular trap (NET) is released by neutrophils to trap invading pathogens and can lead to dysregulation of immune responses and disease pathogenesis. However, systematic evaluation of NET-related genes (NETRGs) for the diagnosis of pediatric sepsis is still lacking. Three datasets were taken from the Gene Expression Omnibus (GEO) database: GSE13904, GSE26378, and GSE26440. After NETRGs and differentially expressed genes (DEGs) were identified in the GSE26378 dataset, crucial genes were identified by using LASSO regression analysis and random forest analysis on the genes that overlapped in both DEGs and NETRGs. These crucial genes were then employed to build a diagnostic model. The diagnostic model's effectiveness in identifying pediatric sepsis across the three datasets was confirmed through receiver operating characteristic curve (ROC) analysis. In addition, clinical pediatric sepsis samples were collected to measure the expression levels of important genes and evaluate the diagnostic model's performance using qRT-PCR in identifying pediatric sepsis in actual clinical samples. Next, using the CIBERSORT database, the relationship between invading immune cells and diagnostic markers was investigated in more detail. Lastly, to evaluate NET formation, we measured myeloperoxidase (MPO)-DNA complex levels using ELISA. A group of five important genes (MME, BST1, S100A12, FCAR, and ALPL) were found among the 13 DEGs associated with NET formation and used to create a diagnostic model for pediatric sepsis. Across all three cohorts, the sepsis group had consistently elevated expression levels of these five critical genes as compared to the normal group. Area under the curve (AUC) values of 1, 0.932, and 0.966 indicate that the diagnostic model performed exceptionally well in terms of diagnosis. Notably, when applied to the clinical samples, the diagnostic model also showed good diagnostic capacity with an AUC of 0.898, outperforming the effectiveness of traditional inflammatory markers such as PCT, CRP, WBC, and NEU%. Lastly, we discovered that children with high ratings for sepsis also had higher MPO-DNA complex levels. In conclusion, the creation and verification of a five-NETRGs diagnostic model for pediatric sepsis performs better than established markers of inflammation.

Keywords: MPO-DNA ELISA; NET; ROC curves; diagnostic model; pediatric sepsis.

PubMed Disclaimer

Conflict of interest statement

Declarations. Ethics Approval and Consent to Participate: This study was supported by the Ethics Committees of The First Affiliated Hospital of Zhengzhou University (2023-KY-0932–002). Consent for Publication: Not applicable. Conflict of Interest: All authors declare no conflict of interest.

Similar articles

Cited by

References

    1. Qin, Y., R.I. Caldino Bohn, A. Sriram, K.F. Kernan, J.A. Carcillo, S. Kim, and H.J. Park. 2023. Refining empiric subgroups of pediatric sepsis using machine-learning techniques on observational data. Frontiers in Pediatrics 11: 1035576. - DOI - PubMed - PMC
    1. Singer, M., C.S. Deutschman, C.W. Seymour, M. Shankar-Hari, D. Annane, M. Bauer, R. Bellomo, G.R. Bernard, J.D. Chiche, C.M. Coopersmith, et al. 2016. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 315 (8): 801–810. - DOI - PubMed - PMC
    1. Evans, L., A. Rhodes, W. Alhazzani, M. Antonelli, C.M. Coopersmith, C. French, F.R. Machado, L. McIntyre, M. Ostermann, H.C. Prescott, et al. 2021. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Critical Care Medicine 49 (11): e1063–e1143. - DOI - PubMed
    1. Delgado-Rizo, V., M.A. Martínez-Guzmán, L. Iñiguez-Gutierrez, A. García-Orozco, A. Alvarado-Navarro, and M. Fafutis-Morris. 2017. Neutrophil Extracellular Traps and Its Implications in Inflammation: An Overview. Frontiers in Immunology 8: 81. - DOI - PubMed - PMC
    1. Kaplan, M.J., and M. Radic. 2012. Neutrophil extracellular traps: double-edged swords of innate immunity. Journal of Immunology (Baltimore, Md: 1950) 189 (6): 2689–2695. - PubMed

LinkOut - more resources