Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Aug;263(4-5):418-428.
doi: 10.1002/path.6291. Epub 2024 May 25.

PCDHGC3 hypermethylation as a potential biomarker of intestinal neuroendocrine carcinomas

Affiliations

PCDHGC3 hypermethylation as a potential biomarker of intestinal neuroendocrine carcinomas

Tamara Cubiella et al. J Pathol. 2024 Aug.

Abstract

Neuroendocrine neoplasms (NENs) encompass tumors arising from neuroendocrine cells in various organs, including the gastrointestinal tract, pancreas, adrenal gland, and paraganglia. Despite advancements, accurately predicting the aggressiveness of gastroenteropancreatic (GEP) NENs based solely on pathological data remains challenging, thereby limiting optimal clinical management. Our previous research unveiled a crucial link between hypermethylation of the protocadherin PCDHGC3 gene and neuroendocrine tumors originating from the paraganglia and adrenal medulla. This epigenetic alteration was associated with increased metastatic potential and succinate dehydrogenase complex (SDH) dysfunction. Expanding upon this discovery, the current study explored PCDHGC3 gene methylation within the context of GEP-NENs in a cohort comprising 34 cases. We uncovered promoter hypermethylation of PCDHGC3 in 29% of GEP-NENs, with a significantly higher prevalence in gastrointestinal (GI) neuroendocrine carcinomas (NECs) compared with both pancreatic (Pan) NECs and neuroendocrine tumors (NETs) of GI and Pan origin. Importantly, these findings were validated in one of the largest multi-center GEP-NEN cohorts. Mechanistic analysis revealed that PCDHGC3 hypermethylation was not associated with SDH mutations or protein loss, indicating an SDH-independent epigenetic mechanism. Clinically, PCDHGC3 hypermethylation emerged as a significant prognostic factor, correlating with reduced overall survival rates in both patient cohorts. Significantly, whereas PCDHGC3 hypermethylation exhibited a strong correlation with TP53 somatic mutations, a hallmark of NEC, its predictive value surpassed that of TP53 mutations, with an area under the curve (AUC) of 0.95 (95% CI 0.83-1.0) for discriminating GI-NECs from GI-NETs, highlighting its superior predictive performance. In conclusion, our findings position PCDHGC3 methylation status as a promising molecular biomarker for effectively stratifying patients with GI-NENs. This discovery has the potential to advance patient care by enabling more precise risk assessments and tailored treatment strategies. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.

Keywords: PCDHGC3; epigenetic; methylation; neuroendocrine carcinoma; protocadherins.

PubMed Disclaimer

References

    1. Shen X, Wang X, Lu X, et al. Molecular biology of pancreatic neuroendocrine tumors: from mechanism to translation. Front Oncol 2022; 12: 967071.
    1. Giandomenico V, Modlin IM, Pontén F, et al. Improving the diagnosis and management of neuroendocrine tumors: utilizing new advances in biomarker and molecular imaging science. Neuroendocrinology 2013; 98: 16–30.
    1. Rindi G, Mete O, Uccella S, et al. Overview of the 2022 WHO classification of neuroendocrine neoplasms. Endocr Pathol 2022; 33: 115–154.
    1. Thomas KEH, Voros BA, Boudreaux JP, et al. Current treatment options in gastroenteropancreatic neuroendocrine carcinoma. Oncologist 2019; 24: 1076–1088.
    1. Milione M, Maisonneuve P, Grillo F, et al. Ki‐67 index of 55% distinguishes two groups of bronchopulmonary pure and composite large cell neuroendocrine carcinomas with distinct prognosis. Neuroendocrinology 2021; 111: 475–489.

Publication types

LinkOut - more resources