A Reference Profile of N-Glycosylation for Human Kidney and the Identification of Cell-Cell Interactions between Parietal Epithelial Cells and Capillary Endothelial Cells by Single-Cell Glycosylation-Sequencing
- PMID: 38797171
- DOI: 10.1159/000539514
A Reference Profile of N-Glycosylation for Human Kidney and the Identification of Cell-Cell Interactions between Parietal Epithelial Cells and Capillary Endothelial Cells by Single-Cell Glycosylation-Sequencing
Abstract
Background: N-glycosylation is one of the most common posttranslational modifications in humans, and these alterations are associated with kidney diseases.
Methods: A novel technological approach, single-cell N-acetyllactosamine sequencing (scLacNAc-seq), was applied to simultaneously detect N-glycosylation expression and the transcriptome at single-cell resolution in three human kidney tissues from zero-time biopsy. Cell clusters, glycation abundance in each cell cluster, functional enrichment analysis, cell-cell crosstalk, and pseudotime analysis were applied.
Results: Using scLacNAc-seq, 24,247 cells and 22 cell clusters were identified, and N-glycan abundance in each cell was obtained. Transcriptome analysis revealed a close connection between capillary endothelial cells (CapECs) and parietal epithelial cells (PECs). PECs and CapECs communicate with each other through several pairs of ligand receptors (e.g., TGFB1-EGFR, GRN-EGFR, TIMP1-FGFR2, VEGFB-FLT1, ANGPT2-TEK, and GRN-TNFRSF1A). Finally, a regulatory network of cell-cell crosstalk between PECs and CapECs was constructed, which is involved in cell development.
Conclusions: We here, for the first time, constructed the glycosylation profile of 22 cell clusters in the human kidney from zero-time biopsy. Moreover, cell-cell communication between PECs and CapECs through the ligand-receptor system may play a crucial regulatory role in cell proliferation.
Keywords: Capillary endothelial cells; Cell-cell interactions; N-glycosylation; Parietal epithelial cells; Single-cell RNA sequencing; Single-cell glycosylation detection; Zero-time biopsy.
© 2024 The Author(s). Published by S. Karger AG, Basel.
MeSH terms
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous
