Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
[Preprint]. 2024 May 14:2024.05.14.593970.
doi: 10.1101/2024.05.14.593970.

KBTBD4 Cancer Hotspot Mutations Drive Neomorphic Degradation of HDAC1/2 Corepressor Complexes

KBTBD4 Cancer Hotspot Mutations Drive Neomorphic Degradation of HDAC1/2 Corepressor Complexes

Xiaowen Xie et al. bioRxiv. .

Update in

  • Converging mechanism of UM171 and KBTBD4 neomorphic cancer mutations.
    Xie X, Zhang O, Yeo MJR, Lee C, Tao R, Harry SA, Payne NC, Nam E, Paul L, Li Y, Kwok HS, Jiang H, Mao H, Hadley JL, Lin H, Batts M, Gosavi PM, D'Angiolella V, Cole PA, Mazitschek R, Northcott PA, Zheng N, Liau BB. Xie X, et al. Nature. 2025 Mar;639(8053):241-249. doi: 10.1038/s41586-024-08533-3. Epub 2025 Feb 12. Nature. 2025. PMID: 39939763 Free PMC article.

Abstract

Cancer mutations can create neomorphic protein-protein interactions to drive aberrant function 1 . As a substrate receptor of the CULLIN3-RBX1 E3 ubiquitin ligase complex, KBTBD4 is recurrently mutated in medulloblastoma (MB) 2 , the most common embryonal brain tumor in children, and pineoblastoma 3 . These mutations impart gain-of-function to KBTBD4 to induce aberrant degradation of the transcriptional corepressor CoREST 4 . However, their mechanism of action remains unresolved. Here, we elucidate the mechanistic basis by which KBTBD4 mutations promote CoREST degradation through engaging HDAC1/2, the direct neomorphic target of the substrate receptor. Using deep mutational scanning, we systematically map the mutational landscape of the KBTBD4 cancer hotspot, revealing distinct preferences by which insertions and substitutions can promote gain-of-function and the critical residues involved in the hotspot interaction. Cryo-electron microscopy (cryo-EM) analysis of two distinct KBTBD4 cancer mutants bound to LSD1-HDAC1-CoREST reveals that a KBTBD4 homodimer asymmetrically engages HDAC1 with two KELCH-repeat propeller domains. The interface between HDAC1 and one of the KBTBD4 propellers is stabilized by the MB mutations, which directly insert a bulky side chain into the active site pocket of HDAC1. Our structural and mutational analyses inform how this hotspot E3-neo-substrate interface can be chemically modulated. First, our results unveil a converging shape complementarity-based mechanism between gain-of-function E3 mutations and a molecular glue degrader, UM171. Second, we demonstrate that HDAC1/2 inhibitors can block the mutant KBTBD4-HDAC1 interface, the aberrant degradation of CoREST, and the growth of KBTBD4-mutant MB models. Altogether, our work reveals the structural and mechanistic basis of cancer mutation-driven neomorphic protein-protein interactions and pharmacological strategies to modulate their action for therapeutic applications.

PubMed Disclaimer

Publication types