Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Sep;19(9):1375-1385.
doi: 10.1038/s41565-024-01681-7. Epub 2024 May 27.

Oral mitochondrial transplantation using nanomotors to treat ischaemic heart disease

Affiliations

Oral mitochondrial transplantation using nanomotors to treat ischaemic heart disease

Ziyu Wu et al. Nat Nanotechnol. 2024 Sep.

Erratum in

Abstract

Mitochondrial transplantation is an important therapeutic strategy for restoring energy supply in patients with ischaemic heart disease (IHD); however, it is limited by the invasiveness of the transplantation method and loss of mitochondrial activity. Here we report successful mitochondrial transplantation by oral administration for IHD therapy. A nitric-oxide-releasing nanomotor is modified on the mitochondria surface to obtain nanomotorized mitochondria with chemotactic targeting ability towards damaged heart tissue due to nanomotor action. The nanomotorized mitochondria are packaged in enteric capsules to protect them from gastric acid erosion. After oral delivery the mitochondria are released in the intestine, where they are quickly absorbed by intestinal cells and secreted into the bloodstream, allowing delivery to the damaged heart tissue. The regulation of disease microenvironment by the nanomotorized mitochondria can not only achieve rapid uptake and high retention of mitochondria by damaged cardiomyocytes but also maintains high activity of the transplanted mitochondria. Furthermore, results from animal models of IHD indicate that the accumulated nanomotorized mitochondria in the damaged heart tissue can regulate cardiac metabolism at the transcriptional level, thus preventing IHD progression. This strategy has the potential to change the therapeutic strategy used to treat IHD.

PubMed Disclaimer

References

    1. Brown, D. A. et al. Mitochondrial function as a therapeutic target in heart failure. Nat. Rev. Cardiol. 14, 238–250 (2017). - PubMed
    1. Godoy, L. C. et al. Association of beta-blocker therapy with cardiovascular outcomes in patients with stable ischemic heart disease. J. Am. Coll. Cardiol. 81, 2299–2311 (2023). - PubMed
    1. Cohn, P. F., Fox, K. M. & Daly, C. Silent myocardial ischemia. Circulation 108, 1263–1277 (2003). - PubMed
    1. Ibanez, B. et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: the Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur. Heart J. 39, 119–177 (2018). - PubMed
    1. Ikeda, G. et al. Mitochondria-rich extracellular vesicles from autologous stem cell-derived cardiomyocytes restore energetics of ischemic myocardium. J. Am. Coll. Cardiol. 77, 1073–1088 (2021). - PubMed - PMC

LinkOut - more resources