Targeting TUBB3 Suppresses Anoikis Resistance and Bone Metastasis in Prostate Cancer
- PMID: 38809199
- DOI: 10.1002/adhm.202400673
Targeting TUBB3 Suppresses Anoikis Resistance and Bone Metastasis in Prostate Cancer
Abstract
Bone metastases occur in more than 70% of advanced prostate cancer (PCa) patients, leading to a poor prognosis. Resistance to detachment-induced apoptosis, also known as anoikis, plays a crucial role in the onset of tumor metastasis. Targeting anoikis resistance is of immense therapeutic significance in repression of metastatic spread. In this study, based on an anoikis-related prognostic risk model of PCa, this study identifies TUBB3 as a key anoikis-related prognostic gene that is highly expressed in bone metastatic PCa. TUBB3 expression is increased in anoikis-resistant PCa cells, and TUBB3 depletion significantly reverses anoikis resistance during extracellular matrix (ECM) detachment and inhibits anoikis-resistance-induced PCa cell invasion and migration as well as epithelial-mesenchymal transition (EMT) process. TUBB3 knockdown significantly reduces αvβ3/FAK/Src axis activation, blocking its downstream oncogenic signaling. In addition, this work develops bone-targeting lipid nanoparticles (BT-LNP) based on bisphosphonate-modified ionizable lipid for systemic delivery of siRNA targeting TUBB3 (siTUBB3). BT-LNP-delivered siTUBB3 therapy with localization in the bone microenvironment significantly attenuate PCa bone metastasis progression in vivo upon intravenous administration. These findings pinpoint that TUBB3, as a key regulator of anoikis resistance, is an effective therapeutic target in bone metastatic PCa and that BT-LNP-mediated systemic delivery of siTUBB3 can be developed as a novel therapeutic strategy for this disease.
Keywords: TUBB3; bone microenvironment; integrin; lipid nanoparticle; prostate cancer.
© 2024 The Author(s). Advanced Healthcare Materials published by Wiley‐VCH GmbH.
Similar articles
-
Activation of BDNF/TrkB pathway promotes prostate cancer progression via induction of epithelial-mesenchymal transition and anoikis resistance.FASEB J. 2020 Jul;34(7):9087-9101. doi: 10.1096/fj.201802159RRR. Epub 2020 May 11. FASEB J. 2020. PMID: 32390303
-
Oncogenic miR-210-3p promotes prostate cancer cell EMT and bone metastasis via NF-κB signaling pathway.Mol Cancer. 2017 Jul 10;16(1):117. doi: 10.1186/s12943-017-0688-6. Mol Cancer. 2017. PMID: 28693582 Free PMC article.
-
MicroRNA-466 inhibits tumor growth and bone metastasis in prostate cancer by direct regulation of osteogenic transcription factor RUNX2.Cell Death Dis. 2017 Jan 26;8(1):e2572. doi: 10.1038/cddis.2017.15. Cell Death Dis. 2017. PMID: 28125091 Free PMC article.
-
Targeting anoikis resistance in prostate cancer metastasis.Mol Aspects Med. 2010 Apr;31(2):205-14. doi: 10.1016/j.mam.2010.02.001. Epub 2010 Feb 11. Mol Aspects Med. 2010. PMID: 20153362 Free PMC article. Review.
-
Non-Coding RNAs Set a New Phenotypic Frontier in Prostate Cancer Metastasis and Resistance.Int J Mol Sci. 2021 Feb 20;22(4):2100. doi: 10.3390/ijms22042100. Int J Mol Sci. 2021. PMID: 33672595 Free PMC article. Review.
Cited by
-
The role and mechanisms of exosome microRNA in regulating metastasis within the tumor microenvironment of prostate cancer.Front Oncol. 2025 Jun 10;15:1580314. doi: 10.3389/fonc.2025.1580314. eCollection 2025. Front Oncol. 2025. PMID: 40556678 Free PMC article. Review.
-
Bioinspired 3D hydrogel scaffold to mimic tumor microenvironment for investigating into the anoikis resistance mechanisms in colorectal cancer.Mater Today Bio. 2025 Jul 12;33:102061. doi: 10.1016/j.mtbio.2025.102061. eCollection 2025 Aug. Mater Today Bio. 2025. PMID: 40697318 Free PMC article.
-
System Analysis Identifies MYBL2 As a Novel Oncogene Target for Metastatic Prostate Cancer.J Cancer. 2025 Feb 11;16(6):1768-1781. doi: 10.7150/jca.107232. eCollection 2025. J Cancer. 2025. PMID: 40092688 Free PMC article.
-
Targeting COL5A1 enhances anoikis thus attenuating malignancy of glioblastoma via inhibiting the Wnt/β-catenin signaling pathway.J Neurooncol. 2025 Aug;174(1):97-109. doi: 10.1007/s11060-025-05036-7. Epub 2025 May 22. J Neurooncol. 2025. PMID: 40402199 Free PMC article.
References
-
- R. L. Siegel, K. D. Miller, H. E. Fuchs, A. Jemal, CA Cancer J. Clin. 2022, 72, 7.
-
- R. L. Siegel, A. N. Giaquinto, A. Jemal, CA Cancer J. Clin. 2024, 74, 12.
-
- J. Kang, F. La Manna, F. Bonollo, N. Sampson, I. L. Alberts, C. Mingels, A. Afshar‐Oromieh, G. N. Thalmann, S. Karkampouna, Cancer Lett. 2022, 530, 156.
-
- J. Guo, F. Wang, Y. Hu, Y. Luo, Y. Wei, K. Xu, H. Zhang, H. Liu, L. Bo, S. Lv, S. Sheng, X. Zhuang, T. Zhang, C. Xu, X. Chen, J. Su, Cell Rep. Med. 2023, 4, 100881.
-
- D. Robinson, E. M. Van Allen, Y. M. Wu, N. Schultz, R. J. Lonigro, J. M. Mosquera, B. Montgomery, M. E. Taplin, C. C. Pritchard, G. Attard, H. Beltran, W. Abida, R. K. Bradley, J. Vinson, X. Cao, P. Vats, L. P. Kunju, M. Hussain, F. Y. Feng, S. A. Tomlins, K. A. Cooney, D. C. Smith, C. Brennan, J. Siddiqui, R. Mehra, Y. Chen, D. E. Rathkopf, M. J. Morris, S. B. Solomon, J. C. Durack, Cell 2015, 161, 1215.
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous