Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 May 29;81(7):195.
doi: 10.1007/s00284-024-03719-4.

In vitro Antibacterial Activity and Secondary Metabolite Profiling of Endolichenic Fungi Isolated from Genus Parmotrema

Affiliations

In vitro Antibacterial Activity and Secondary Metabolite Profiling of Endolichenic Fungi Isolated from Genus Parmotrema

Jyotsna Chakarwarti et al. Curr Microbiol. .

Abstract

The endolichenic fungi are an unexplored group of organisms for the production of bioactive secondary metabolites. The aim of the present study is to determine the antibacterial potential of endolichenic fungi isolated from genus Parmotrema. The study is continuation of our previous work, wherein a total of 73 endolichenic fungi were isolated from the lichenized fungi, which resulted in 47 species under 23 genera. All the isolated endolichenic fungi were screened for preliminary antibacterial activity. Five endolichenic fungi-Daldinia eschscholtzii, Nemania diffusa, Preussia sp., Trichoderma sp. and Xylaria feejeensis, were selected for further antibacterial activity by disc diffusion method. The zone of inhibition ranged from 14.3 ± 0.1 to 23.2 ± 0.1. The chemical composition of the selected endolichenic fungi was analysed through GC-MS, which yielded a total of 108 compounds from all the selected five endolichenic fungi. Diethyl phthalate, 1-hexadecanol, dibutyl phthalate, n-tetracosanol-1, 1-nonadecene, pyrrol[1,2-a] pyrazine-1,4-dione, hexahydro-3-(2-methyl) and tetratetracontane were found to be common compounds among one or the other endolichenic fungi, which possibly were responsible for antibacterial activity. GC-MS data were further analysed through Principal Component Analysis which showed D. eschscholtzii to be with unique pattern of expression of metabolites. Compound confirmation test revealed coumaric acid to be responsible for antibacterial activity in D. eschscholtzii. So, the study proves that endolichenic fungi that inhabit lichenized fungal thalli could be a source of potential antibacterial compounds.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Baker RE, Mahmud AS, Miller I, Rajeev M, Rasambainarivo F, Rice BL, Takahashi S, Tatem AJ, Wagner CE, Wang LF, Wesolowski A, Metcalf CJE (2022) Infectious disease in an era of global change. Nat Rev Microbiol 20:193–205. https://doi.org/10.1038/s41579-021-00639-z - DOI - PubMed
    1. Atanasov AG, Zotchev SB, Dirsch VM, Supuran CT (2021) Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov 20:200–216. https://doi.org/10.1038/s41573-020-00114-z - DOI - PubMed - PMC
    1. Pham JV, Yilma MA, Feliz A, Majid MT, Maffetone N, Walker JR, Kim E, Cho HJ, Reynolds JM, Song MC, Park SR, Yoon YJ (2019) A review of the microbial production of bioactive natural products and biologics. Front Microbiol 10:1404. https://doi.org/10.3389/fmicb.2019.01404 - DOI - PubMed - PMC
    1. Farrar JF (1976) The lichen as an ecosystem: observation and experiment. In: Brown DH, Hawksworth DL, Bailey RH (eds) Lichenology: progress and problems. Academic Press, London, pp 385–406
    1. Seaward MRD (1988) Contribution of lichens to ecosystems. In: Galun M (ed) CRC handbook of lichenology. CRC Press, Boca Raton, pp 107–129

MeSH terms

Substances

LinkOut - more resources