Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Aug:96:103203.
doi: 10.1016/j.media.2024.103203. Epub 2024 May 21.

Unsupervised mutual transformer learning for multi-gigapixel Whole Slide Image classification

Affiliations

Unsupervised mutual transformer learning for multi-gigapixel Whole Slide Image classification

Sajid Javed et al. Med Image Anal. 2024 Aug.

Abstract

The classification of gigapixel Whole Slide Images (WSIs) is an important task in the emerging area of computational pathology. There has been a surge of interest in deep learning models for WSI classification with clinical applications such as cancer detection or prediction of cellular mutations. Most supervised methods require expensive and labor-intensive manual annotations by expert pathologists. Weakly supervised Multiple Instance Learning (MIL) methods have recently demonstrated excellent performance; however, they still require large-scale slide-level labeled training datasets that require a careful inspection of each slide by an expert pathologist. In this work, we propose a fully unsupervised WSI classification algorithm based on mutual transformer learning. The instances (i.e., patches) from gigapixel WSIs are transformed into a latent space and then inverse-transformed to the original space. Using the transformation loss, pseudo labels are generated and cleaned using a transformer label cleaner. The proposed transformer-based pseudo-label generator and cleaner modules mutually train each other iteratively in an unsupervised manner. A discriminative learning mechanism is introduced to improve normal versus cancerous instance labeling. In addition to the unsupervised learning, we demonstrate the effectiveness of the proposed framework for weakly supervised learning and cancer subtype classification as downstream analysis. Extensive experiments on four publicly available datasets show better performance of the proposed algorithm compared to the existing state-of-the-art methods.

Keywords: Cancer imaging; Computational pathology; Multi-gigapixel Whole Slide Images; Unsupervised learning; Vision transformer.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

MeSH terms

LinkOut - more resources