Identification of modules and key genes associated with breast cancer subtypes through network analysis
- PMID: 38811600
- PMCID: PMC11137066
- DOI: 10.1038/s41598-024-61908-4
Identification of modules and key genes associated with breast cancer subtypes through network analysis
Abstract
Breast cancer is the most common malignancy in women around the world. Intratumor and intertumoral heterogeneity persist in mammary tumors. Therefore, the identification of biomarkers is essential for the treatment of this malignancy. This study analyzed 28,143 genes expressed in 49 breast cancer cell lines using a Weighted Gene Co-expression Network Analysis to determine specific target proteins for Basal A, Basal B, Luminal A, Luminal B, and HER2 ampl breast cancer subtypes. Sixty-five modules were identified, of which five were characterized as having a high correlation with breast cancer subtypes. Genes overexpressed in the tumor were found to participate in the following mechanisms: regulation of the apoptotic process, transcriptional regulation, angiogenesis, signaling, and cellular survival. In particular, we identified the following genes, considered as hubs: IFIT3, an inhibitor of viral and cellular processes; ETS1, a transcription factor involved in cell death and tumorigenesis; ENSG00000259723 lncRNA, expressed in cancers; AL033519.3, a hypothetical gene; and TMEM86A, important for regulating keratinocyte membrane properties, considered as a key in Basal A, Basal B, Luminal A, Luminal B, and HER2 ampl breast cancer subtypes, respectively. The modules and genes identified in this work can be used to identify possible biomarkers or therapeutic targets in different breast cancer subtypes.
© 2024. The Author(s).
Conflict of interest statement
The authors declare no competing interests.
Figures
Similar articles
-
Competing endogenous RNA network analysis identifies critical genes among the different breast cancer subtypes.Oncotarget. 2017 Feb 7;8(6):10171-10184. doi: 10.18632/oncotarget.14361. Oncotarget. 2017. PMID: 28052038 Free PMC article.
-
Single-Sample Networks Reveal Intra-Cytoband Co-Expression Hotspots in Breast Cancer Subtypes.Int J Mol Sci. 2024 Nov 13;25(22):12163. doi: 10.3390/ijms252212163. Int J Mol Sci. 2024. PMID: 39596229 Free PMC article.
-
The gene expression landscape of breast cancer is shaped by tumor protein p53 status and epithelial-mesenchymal transition.Breast Cancer Res. 2012 Jul 27;14(4):R113. doi: 10.1186/bcr3236. Breast Cancer Res. 2012. PMID: 22839103 Free PMC article.
-
Identification of key genes unique to the luminal a and basal-like breast cancer subtypes via bioinformatic analysis.World J Surg Oncol. 2020 Oct 16;18(1):268. doi: 10.1186/s12957-020-02042-z. World J Surg Oncol. 2020. PMID: 33066779 Free PMC article.
-
Transcriptional regulation of normal human mammary cell heterogeneity and its perturbation in breast cancer.EMBO J. 2019 Jul 15;38(14):e100330. doi: 10.15252/embj.2018100330. Epub 2019 Jan 11. EMBO J. 2019. PMID: 31304632 Free PMC article. Review.
Cited by
-
Therapy-induced senescence is a transient drug resistance mechanism in breast cancer.Mol Cancer. 2025 May 1;24(1):128. doi: 10.1186/s12943-025-02310-0. Mol Cancer. 2025. PMID: 40312750 Free PMC article.
-
Clinical Utility of IFIT Proteins in Human Malignancies.Biomedicines. 2025 Jun 11;13(6):1435. doi: 10.3390/biomedicines13061435. Biomedicines. 2025. PMID: 40564154 Free PMC article. Review.
-
Cohesive data analysis for the identification of prognostic hub genes and significant pathways associated with HER2 + and TN breast cancer types.Sci Rep. 2025 Jul 2;15(1):23675. doi: 10.1038/s41598-025-94084-0. Sci Rep. 2025. PMID: 40604083 Free PMC article.
-
Online-adjusted evolutionary biclustering algorithm to identify significant modules in gene expression data.Brief Bioinform. 2024 Nov 22;26(1):bbae681. doi: 10.1093/bib/bbae681. Brief Bioinform. 2024. PMID: 39749664 Free PMC article.
-
IFIT3: a crucial mediator in innate immunity and tumor progression with therapeutic implications.Front Immunol. 2025 Feb 24;16:1515718. doi: 10.3389/fimmu.2025.1515718. eCollection 2025. Front Immunol. 2025. PMID: 40061935 Free PMC article. Review.
References
-
- World Health Organization. Breast cancer, accessed 12 April 2021; https://www.who.int/news-room/fact-sheets/detail/breast-cancer (2021).
-
- Henderson Craig I. Breast Cancer Fundamentals of Evidence-Based Disease Management. Oxford University Press; 2015. pp. 1–23.
MeSH terms
Substances
Grants and funding
- 773600/Consejo Nacional de Ciencia y Tecnología
- 320012/Consejo Nacional de Ciencia y Tecnología
- SIP20211325/Secretaria de Investigación y Posgrado (SIP)
- SIP20220709/Secretaria de Investigación y Posgrado (SIP)
- IA207423/Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México
LinkOut - more resources
Full Text Sources
Medical
Research Materials
Miscellaneous
