Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Jan 25;260(2):714-9.

Branch specificity of bovine colostrum CMP-sialic acid: N-acetyllactosaminide alpha 2----6-sialyltransferase. Interaction with biantennary oligosaccharides and glycopeptides of N-glycosylproteins

  • PMID: 3881425
Free article

Branch specificity of bovine colostrum CMP-sialic acid: N-acetyllactosaminide alpha 2----6-sialyltransferase. Interaction with biantennary oligosaccharides and glycopeptides of N-glycosylproteins

D H Joziasse et al. J Biol Chem. .
Free article

Abstract

By use of 500-MHz 1H NMR spectroscopy, the branch specificity of bovine colostrum CMP-NeuAc:Gal beta 1----4GlcNAc-R alpha 2----6-sialyltransferase towards a biantennary glycopeptide and oligosaccharides of the N-acetyllactosamine type, differing in completeness and structure of their core portion, was investigated. In agreement with earlier reports (Van den Eijnden, D. H., Joziasse, D. H., Dorland, L., Van Halbeek H., Vliegenthart, J. F. G., and Schmid, K. (1980) Biochem. Biophys. Res. Commun. 92, 839-845), it appears that the enzyme strongly prefers the galactosyl residue at the Man alpha 1----3Man branch of the biantennary glycopeptide for attachment of the first sialic acid residue. This branch specificity is fully preserved with the structure (formula; see text) Reduction of the reducing N-acetylglucosaminyl residue in this structure, however, leads to a decreased branch specificity, whereas removal of this residue results in a random attachment of sialic acid to the galactoses at both branches. The decrease in branch specificity is accompanied by a reduction in the rate of sialic acid transfer to the galactose at the alpha 1----3 branch. Our results indicate that the presence of the aforementioned N-acetylglucosaminyl residue is a minimal structural requirement for branch specificity of the sialyltransferase. We propose that in the interaction of the sialyltransferase with its substrates, this N-acetylglucosaminyl residue functions as a recognition site mediating the correct positioning of the substrate on the enzyme.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources