Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Editorial
. 2024 May 26;16(5):479-485.
doi: 10.4252/wjsc.v16.i5.479.

Deer antler stem cell niche: An interesting perspective

Affiliations
Editorial

Deer antler stem cell niche: An interesting perspective

Claudia Cavallini et al. World J Stem Cells. .

Abstract

In recent years, there has been considerable exploration into methods aimed at enhancing the regenerative capacity of transplanted and/or tissue-resident cells. Biomaterials, in particular, have garnered significant interest for their potential to serve as natural scaffolds for cells. In this editorial, we provide commentary on the study by Wang et al, in a recently published issue of World J Stem Cells, which investigates the use of a decellularized xenogeneic extracellular matrix (ECM) derived from antler stem cells for repairing osteochondral defects in rat knee joints. Our focus lies specifically on the crucial role of biological scaffolds as a strategy for augmenting stem cell potential and regenerative capabilities, thanks to the establishment of a favorable microenvironment (niche). Stem cell differentiation heavily depends on exposure to intrinsic properties of the ECM, including its chemical and protein composition, as well as the mechanical forces it can generate. Collectively, these physicochemical cues contribute to a bio-instructive signaling environment that offers tissue-specific guidance for achieving effective repair and regeneration. The interest in mechanobiology, often conceptualized as a form of "structural memory", is steadily gaining more validation and momentum, especially in light of findings such as these.

Keywords: Antler stem cells; Cell memory; Decellularized scaffolds; Extracellular matrix; Regenerative medicine; Stem cell niche.

PubMed Disclaimer

Conflict of interest statement

Conflict-of-interest statement: All the authors report no relevant conflicts of interest for this article.

References

    1. Wang YS, Chu WH, Zhai JJ, Wang WY, He ZM, Zhao QM, Li CY. High quality repair of osteochondral defects in rats using the extracellular matrix of antler stem cells. World J Stem Cells. 2024;16:176–190. - PMC - PubMed
    1. Ayala-Cuellar AP, Kang JH, Jeung EB, Choi KC. Roles of Mesenchymal Stem Cells in Tissue Regeneration and Immunomodulation. Biomol Ther (Seoul) 2019;27:25–33. - PMC - PubMed
    1. Huerta CT, Ortiz YY, Liu ZJ, Velazquez OC. Methods and Limitations of Augmenting Mesenchymal Stem Cells for Therapeutic Applications. Adv Wound Care (New Rochelle) 2023;12:467–481. - PMC - PubMed
    1. Noronha NC, Mizukami A, Caliári-Oliveira C, Cominal JG, Rocha JLM, Covas DT, Swiech K, Malmegrim KCR. Priming approaches to improve the efficacy of mesenchymal stromal cell-based therapies. Stem Cell Res Ther. 2019;10:131. - PMC - PubMed
    1. Ghasemi-Mobarakeh L, Prabhakaran MP, Tian L, Shamirzaei-Jeshvaghani E, Dehghani L, Ramakrishna S. Structural properties of scaffolds: Crucial parameters towards stem cells differentiation. World J Stem Cells. 2015;7:728–744. - PMC - PubMed

Publication types