Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2024:2802:165-187.
doi: 10.1007/978-1-0716-3838-5_7.

Comparative Genome Annotation

Affiliations
Review

Comparative Genome Annotation

Stefanie Nachtweide et al. Methods Mol Biol. 2024.

Abstract

Newly sequenced genomes are being added to the tree of life at an unprecedented fast pace. A large proportion of such new genomes are phylogenetically close to previously sequenced and annotated genomes. In other cases, whole clades of closely related species or strains ought to be annotated simultaneously. Often, in subsequent studies, differences between the closely related species or strains are in the focus of research when the shared gene structures prevail. We here review methods for comparative structural genome annotation. The reviewed methods include classical approaches such as the alignment of protein sequences or protein profiles against the genome and comparative gene prediction methods that exploit a genome alignment to annotate either a single target genome or all input genomes simultaneously. We discuss how the methods depend on the phylogenetic placement of genomes, give advice on the choice of methods, and examine the consistency between gene structure annotations in an example. Furthermore, we provide practical advice on genome annotation in general.

Keywords: Annotation consistency; Annotation mapping; Clade annotation; Gene prediction; Multi-genome alignment.

PubMed Disclaimer

References

    1. Tonkin-Hill G, MacAlasdair N, Ruis C, Weimann A, Horesh G, Lees JA, Gladstone RA, Lo S, Beaudoin C, Floto RA et al (2020) Producing polished prokaryotic pangenomes with the Panaroo pipeline. Genome Biol 21:1–21
    1. Kuznetsov D, Tegenfeldt F, Manni M, Seppey M, Berkeley M, Kriventseva EV, Zdobnov EM (2023) OrthoDB v11: annotation of orthologs in the widest sampling of organismal diversity. Nucleic Acids Res 51(D1):D445–D451 - PubMed
    1. Herrero J, Muffato M, Beal K, Fitzgerald S, Gordon L, Pignatelli M, Vilella AJ, Searle SM, Amode R, Brent S et al (2016) Ensembl comparative genomics resources. Database
    1. Schmitt-Engel C, Schultheis D, Schwirz J, Ströhlein N, Troelenberg N, Majumdar U, Grossmann D, Richter T, Tech M, Dönitz J, Gerischer L, Theis M, Schild I, Trauner J, Koniszewski ND, Küster E, Kittelmann S, Hu Y, Lehmann S, Siemanowski J, Ulrich J, Panfilio KA, Schröder R, Morgenstern B, Stanke M, Buchhholz F, Frasch M, Roth S, Wimmer EA, Schoppmeier M, Klingler M, Bucher G (2015) The iBeetle large-scale RNAi screen reveals gene functions for insect development and physiology. Nat Commun 6:7822 - PubMed
    1. Avila-Herrera A, Pollard KS (2015) Coevolutionary analyses require phylogenetically deep alignments and better null models to accurately detect inter-protein contacts within and between species. BMC Bioinform 16(1):1–18

LinkOut - more resources