High-Resolution Raman Imaging of >300 Patient-Derived Cells from Nine Different Leukemia Subtypes: A Global Clustering Approach
- PMID: 38821490
- PMCID: PMC11170555
- DOI: 10.1021/acs.analchem.4c00787
High-Resolution Raman Imaging of >300 Patient-Derived Cells from Nine Different Leukemia Subtypes: A Global Clustering Approach
Abstract
Leukemia comprises a diverse group of bone marrow tumors marked by cell proliferation. Current diagnosis involves identifying leukemia subtypes through visual assessment of blood and bone marrow smears, a subjective and time-consuming method. Our study introduces the characterization of different leukemia subtypes using a global clustering approach of Raman hyperspectral maps of cells. We analyzed bone marrow samples from 19 patients, each presenting one of nine distinct leukemia subtypes, by conducting high spatial resolution Raman imaging on 319 cells, generating over 1.3 million spectra in total. An automated preprocessing pipeline followed by a single-step global clustering approach performed over the entire data set identified relevant cellular components (cytoplasm, nucleus, carotenoids, myeloperoxidase (MPO), and hemoglobin (HB)) enabling the unsupervised creation of high-quality pseudostained images at the single-cell level. Furthermore, this approach provided a semiquantitative analysis of cellular component distribution, and multivariate analysis of clustering results revealed the potential of Raman imaging in leukemia research, highlighting both advantages and challenges associated with global clustering.
Conflict of interest statement
The authors declare no competing financial interest.
Figures




References
-
- Arber D. A.; Orazi A.; Hasserjian R.; Thiele J.; Borowitz M. J.; Le Beau M. M.; Bloomfield C. D.; Cazzola M.; Vardiman J. W. The 2016 Revision to the World Health Organization Classification of Myeloid Neoplasms and Acute Leukemia. Blood 2016, 127 (20), 2391–2405. 10.1182/blood-2016-03-643544. - DOI - PubMed
-
- Swerdlow S. H.; Campo E.; Harris N. L.; Jaffe E. S.; Pileri S. A.; Stein H.; Thiele J.; Vardiman J. W.. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, 4th th ed; International agency for research on cancer: Lyon, France, 2008; Vol. 2.
-
- Swerdlow S. H.; Campo E.; Harris N. L.; Jaffe E. S.; Pileri S. A.; Stein H.; Thiele J.. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, 4th th ed; International agency for research on cancer: Lyon, France, 2017; Vol. 2.
-
- Sasada K.; Yamamoto N.; Masuda H.; Tanaka Y.; Ishihara A.; Takamatsu Y.; Yatomi Y.; Katsuda W.; Sato I.; Matsui H. Inter-Observer Variance and the Need for Standardization in the Morphological Classification of Myelodysplastic Syndrome. Leuk. Res. 2018, 69, 54–59. 10.1016/j.leukres.2018.04.003. - DOI - PubMed
-
- Alsalem M. A.; Zaidan A. A.; Zaidan B. B.; Hashim M.; Madhloom H. T.; Azeez N. D.; Alsyisuf S. A Review of the Automated Detection and Classification of Acute Leukaemia: Coherent Taxonomy, Datasets, Validation and Performance Measurements, Motivation, Open Challenges and Recommendations. Comput. Methods Programs Biomed. 2018, 158, 93–112. 10.1016/j.cmpb.2018.02.005. - DOI - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources