Studies of insulin action on the amphibian oocyte plasma membrane using NMR, electrophysiological and ion flux techniques
- PMID: 3882159
- DOI: 10.1016/0167-4889(85)90140-5
Studies of insulin action on the amphibian oocyte plasma membrane using NMR, electrophysiological and ion flux techniques
Abstract
Insulin (0.1-10 microM) reinitiates the meiotic divisions in Rana oocytes and produces a 14-20 mV negative-going hyperpolarization of the plasma membrane as well as a 0.25 unit increase in intracellular pH during the first 90 min. During hyperpolarization, the Na+ conductance of the membrane decreases by 40-50% with a concomitant increase in 22Na+ uptake from the medium. The increased uptake of Na+ during a period of decreasing Na+ conductance is apparently due to an increase in fluid phase turnover associated with insulin-mediated endocytosis. Both membrane hyperpolarization and increase in pHi are Na+-dependent and are blocked by the serine proteinase inhibitor, phenylmethylsulfonyl fluoride. The membrane potential of the prophase oocyte has a significant electrogenic component with potential but not conductance sensitive to glycosides and substitution of Li+ for Na+. Insulin hyperpolarizes Li+ or glycoside-treated oocytes whereas glycosides do not affect insulin-hyperpolarized oocytes. [3H]Ouabain binding by the plasma membrane of the untreated oocyte shows at least two K+-sensitive components (Kd = 42 and 2000 nM) linked to inhibition of the Na+ pump. Insulin-treated oocytes show a single class of intermediate-affinity ouabain sites (Kd = 490 nM) which appear to result from insulin-induced internalization of membrane-bound ouabain. [125I]Insulin binding to the plasma membrane shows a class of high-affinity sites (Kd = 87 nM) with 40-50 pump sites per insulin-binding site. Our results suggest that insulin-induced mediator peptides stimulate Na+-H+ exchange resulting in an increase in intracellular pH and Na+ uptake concomitant with an increase in receptor-mediated endocytosis and a decrease in Na+ conductance and associated membrane hyperpolarization. The net result appears to be a down-regulation of the Na+ pump which together with a decrease in Na+ conductance may divert high-energy phosphate compounds from cation regulation to anabolic processes of meiosis.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
