Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2024 Sep 15:257:119290.
doi: 10.1016/j.envres.2024.119290. Epub 2024 May 31.

Synergistic insights into pesticide persistence and microbial dynamics for bioremediation

Affiliations
Review

Synergistic insights into pesticide persistence and microbial dynamics for bioremediation

Srishti Sinha Ray et al. Environ Res. .

Abstract

Rampant use of fertilizers and pesticides for boosting agricultural crop productivity has proven detrimental impact on land, water, and air quality globally. Although fertilizers and pesticides ensure greater food security, their unscientific management negatively impacts soil fertility, structure of soil microbiome and ultimately human health and hygiene. Pesticides exert varying impacts on soil properties and microbial community functions, contingent on factors such as their chemical structure, mode of action, toxicity, and dose-response characteristics. The diversity of bacterial responses to different pesticides presents a valuable opportunity for pesticide remediation. In this context, OMICS technologies are currently under development, and notable advancements in gene editing, including CRISPR technologies, have facilitated bacterial engineering, opening promising avenues for reducing toxicity and enhancing biological remediation. This paper provides a holistic overview of pesticide dynamics, with a specific focus on organophosphate, organochlorine, and pyrethroids. It covers their occurrence, activity, and potential mitigation strategies, with an emphasis on the microbial degradation route. Subsequently, the pesticide degradation pathways, associated genes and regulatory mechanisms, associated OMICS approaches in soil microbes with a special emphasis on CRISPR/Cas9 are also being discussed. Here, we analyze key environmental factors that significantly impact pesticide degradation mechanisms and underscore the urgency of developing alternative strategies to diminish our reliance on synthetic chemicals.

Keywords: CRISPR; OMICS; Pesticides; Soil microbiome; r-DNA technology.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by