Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Feb 15;147(1):153-61.
doi: 10.1111/j.1432-1033.1985.tb08731.x.

Nucleotide sequence analysis of the nuclear gene coding for manganese superoxide dismutase of yeast mitochondria, a gene previously assumed to code for the Rieske iron-sulphur protein

Free article

Nucleotide sequence analysis of the nuclear gene coding for manganese superoxide dismutase of yeast mitochondria, a gene previously assumed to code for the Rieske iron-sulphur protein

C A Marres et al. Eur J Biochem. .
Free article

Abstract

We have previously reported the isolation of the gene coding for a 25-kDa polypeptide present in a purified yeast QH2:cytochrome c oxidoreductase preparation, which was thus identified as the gene for the Rieske iron-sulphur protein [Van Loon et al. (1983) Gene 26, 261-272]. Subsequent DNA sequence analysis reported here reveals, however, that the encoded protein is in fact manganese superoxide dismutase, a mitochondrial matrix protein. Comparison with the known amino acid sequence of the mature protein indicates that it is synthesized with an N-terminal extension of 27 amino acids. In common with the N-terminal extensions of other imported mitochondrial proteins, the presequence has several basic residues but lacks negatively charged residues. The function of these positive charges and other possible topogenic sequences are discussed. Sequences 5' of the gene contain two elements that may be homologous to the suggested regulatory sites, UAS 1 and UAS 2 in the yeast CYC1 gene [Guarente et al. (1984) Cell 36, 503-511]. The predicted secondary structures in manganese superoxide dismutase appear to be very similar to those reported for iron superoxide dismutase, suggesting similar three-dimensional structures. Making use of the known three-dimensional structure of the Fe enzyme, the Mn ligands are predicted.

PubMed Disclaimer

Publication types

MeSH terms

Associated data

LinkOut - more resources