The immunomodulatory of interleukin-33 in rheumatoid arthritis: A systematic review
- PMID: 38825072
- DOI: 10.1016/j.clim.2024.110264
The immunomodulatory of interleukin-33 in rheumatoid arthritis: A systematic review
Abstract
Rheumatoid arthritis (RA) is a systemic chronic autoimmune disease that primarily affects the joints and surrounding soft tissues, characterized by chronic inflammation and proliferation of the synovium. Various immune cells are involved in the pathophysiology of RA. The complex interplay of factors such as chronic inflammation, genetic susceptibility, dysregulation of serum antibody levels, among others, contribute to the complexity of the disease mechanism, disease activity, and treatment of RA. Recently, the cytokine storm leading to increased disease activity in RA has gained significant attention. Interleukin-33 (IL-33), a member of the IL-1 family, plays a crucial role in inflammation and immune regulation. ST2 (suppression of tumorigenicity 2 receptor), the receptor for IL-33, is widely expressed on the surface of various immune cells. When IL-33 binds to its receptor ST2, it activates downstream signaling pathways to exert immunoregulatory effects. In RA, IL-33 regulates the progression of the disease by modulating immune cells such as circulating monocytes, tissue-resident macrophages, synovial fibroblasts, mast cells, dendritic cells, neutrophils, T cells, B cells, endothelial cells, and others. We have summarized and analyzed these findings to elucidate the pathways through which IL-33 regulates RA. Furthermore, IL-33 has been detected in the synovium, serum, and synovial fluid of RA patients. Due to inconsistent research results, we conducted a meta-analysis on the association between serum IL-33, synovial fluid IL-33, and the risk of developing RA in patients. The pooled SMD was 1.29 (95% CI: 1.15-1.44), indicating that IL-33 promotes the onset and pathophysiological progression of RA. Therefore, IL-33 may serve as a biomarker for predicting the risk of developing RA and treatment outcomes. As existing drugs for RA still cannot address drug resistance in some patients, new therapeutic approaches are needed to alleviate the significant burden on RA patients and healthcare systems. In light of this, we analyzed the potential of targeting the IL-33/ST2-related signaling pathway to modulate immune cells associated with RA and alleviate inflammation. We also reviewed IL-33 and RA susceptibility-related single nucleotide polymorphisms, suggesting potential involvement of IL-33 and macrophage-related drug-resistant genes in RA resistance therapy. Our review elucidates the role of IL-33 in the pathophysiology of RA, offering new insights for the treatment of RA.
Keywords: IL-33; Immune cells; Macrophages; Rheumatoid arthritis; ST2.
Copyright © 2024. Published by Elsevier Inc.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Similar articles
-
DS-Modified Paeoniflorin pH-Responsive Lipid-Polymer Hybrid Nanoparticles for Targeted Macrophage Polarization in a Rat Model of Rheumatoid Arthritis.Int J Nanomedicine. 2025 Jul 12;20:8967-8992. doi: 10.2147/IJN.S516434. eCollection 2025. Int J Nanomedicine. 2025. PMID: 40671689 Free PMC article.
-
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4. Cochrane Database Syst Rev. 2021. Update in: Cochrane Database Syst Rev. 2022 May 23;5:CD011535. doi: 10.1002/14651858.CD011535.pub5. PMID: 33871055 Free PMC article. Updated.
-
High CBD extract (CBD-X) modulates inflammation and immune cell activity in rheumatoid arthritis.Front Immunol. 2025 Jul 10;16:1599109. doi: 10.3389/fimmu.2025.1599109. eCollection 2025. Front Immunol. 2025. PMID: 40709173 Free PMC article.
-
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.Cochrane Database Syst Rev. 2017 Dec 22;12(12):CD011535. doi: 10.1002/14651858.CD011535.pub2. Cochrane Database Syst Rev. 2017. Update in: Cochrane Database Syst Rev. 2020 Jan 9;1:CD011535. doi: 10.1002/14651858.CD011535.pub3. PMID: 29271481 Free PMC article. Updated.
-
Exploring the Role of Macrophages and Their Associated Structures in Rheumatoid Arthritis.J Innate Immun. 2025;17(1):95-111. doi: 10.1159/000543444. Epub 2025 Feb 12. J Innate Immun. 2025. PMID: 39938504 Free PMC article. Review.
Cited by
-
Mendelian randomization and mediation analysis reveal the role of immune cell subsets in the causal pathways between blood cell perturbation responses and rheumatoid arthritis.Clin Rheumatol. 2025 Apr;44(4):1537-1548. doi: 10.1007/s10067-025-07387-y. Epub 2025 Mar 12. Clin Rheumatol. 2025. PMID: 40072781
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Research Materials