Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Jul:177:108669.
doi: 10.1016/j.compbiomed.2024.108669. Epub 2024 May 29.

DSSGNN-PPI: A Protein-Protein Interactions prediction model based on Double Structure and Sequence graph neural networks

Affiliations

DSSGNN-PPI: A Protein-Protein Interactions prediction model based on Double Structure and Sequence graph neural networks

Fan Zhang et al. Comput Biol Med. 2024 Jul.

Abstract

The process of experimentally confirming complex interaction networks among proteins is time-consuming and laborious. This study aims to address Protein-Protein Interactions (PPIs) prediction based on graph neural networks (GNN). A novel multilevel prediction model for PPIs named DSSGNN-PPI (Double Structure and Sequence GNN for PPIs) is designed. Initially, a distance graph between amino acid residues is constructed. Subsequently, the distance graph is fed into an underlying graph attention network module. This enables us to efficiently learn vector representations that encode the three-dimensional structure of proteins and simultaneously aggregate key local patterns and overall topological information to obtain graph embedding that adequately represent local and global structural features. In addition, the embedding representations that reflect sequence properties are obtained. Two features are fused to construct high-level protein complex networks, which are fed into the designed gated graph attention network to extract complex topological patterns. By combining heterogeneous multi-source information from downstream structure graph and upstream sequence models, the understanding of PPIs is comprehensively enhanced. A series of evaluation results validate the remarkable effectiveness of DSSGNN-PPI framework in enhancing the prediction of multi-type interactions among proteins. The multilevel representation learning and information fusion strategies provide a new effective solution paradigm for structural biology problems. The source code for DSSGNN-PPI has been hosted on GitHub and is available at https://github.com/cstudy1/DSSGNN-PPI.

Keywords: DSSGNN-PPI; Dual-level architecture; Graph neural networks; Prediction; Protein–Protein Interactions.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

References

Publication types

LinkOut - more resources