Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024;30(24):1912-1926.
doi: 10.2174/0113816128293824240517113238.

Protective Effect and Related Mechanism of Modified Danggui Buxue Decoction on Retinal Oxidative Damage in Mice based on Network Pharmacology

Affiliations

Protective Effect and Related Mechanism of Modified Danggui Buxue Decoction on Retinal Oxidative Damage in Mice based on Network Pharmacology

Xiangka Hu et al. Curr Pharm Des. 2024.

Abstract

Introduction: Age-related macular degeneration (AMD) is one of the common diseases that cause vision loss in the elderly, and oxidative stress has been considered a major pathogenic factor for AMD. Modified Danggui Buxue Decoction (RRP) has a good therapeutic effect on non-proliferatic diabetic retinopathy and can improve the clinical symptoms of patients.

Methods: The key ingredients and core targets of RRP protecting retinal oxidative damage were obtained by Network pharmacology analysis. A mouse retinal oxidative damage model induced by tail vein injection of 1% NaIO3 solution (25 mg/kg) was treated with RRP for 4 weeks and used to verify the pharmacodynamics and related mechanism.

Aim: This study aimed to predict and verify the protective effect and mechanism of RRP on retinal oxidative damage in mice based on network pharmacology and animal experiments.

Results: A total of 15 key active components included in RRP interacted with 57 core targets related to retinal oxidative damage (such as AKT1, NFE2L2, HMOX1), mainly involved in the AGE-RAGE signaling pathway in diabetic complications, PI3K-AKT signaling pathway and so on. Further studies in vivo found that RRP improved the retinal oxidative damage, increased the content of SOD and GSH, decreased the content of MDA in mouse serum, promoted the expression of p-PI3K, p-AKT, Nrf2, HO-1 and NQO1 proteins in the mouse retina, and inhibited the expression of Nrf2 in the cytoplasm.

Conclusion: This study revealed that RRP had a protective effect on oxidative damage of the retina in mice, and might exert anti-oxidative effect by activating the PI3K/Akt/Nrf2 signal pathway. This study provided scientific data for the further development of hospital preparations of RRP, and a good theoretical basis for the clinical application of RRP.

Keywords: AMD.; Modified Danggui Buxue decoction; network pharmacology; nuclear factor e2-related factor 2; protein kinase b; retinal oxidative damage.

PubMed Disclaimer

Similar articles

References

    1. Wang J.; Li M.; Geng Z.; Khattak S.; Ji X.; Wu D.; Dang Y.; Role of oxidative stress in retinal disease and the early intervention strategies: A review. Oxid Med Cell Longev 2022,2022,1-13 - DOI - PubMed
    1. Steinmetz J.D.; Bourne R.R.A.; Briant P.S.; Flaxman S.R.; Taylor H.R.B.; Jonas J.B.; Abdoli A.A.; Abrha W.A.; Abualhasan A.; Abu-Gharbieh E.G.; Adal T.G.; Afshin A.; Ahmadieh H.; Alemayehu W.; Alemzadeh S.A.S.; Alfaar A.S.; Alipour V.; Androudi S.; Arabloo J.; Arditi A.B.; Aregawi B.B.; Arrigo A.; Ashbaugh C.; Ashrafi E.D.; Atnafu D.D.; Bagli E.A.; Baig A.A.W.; Bärnighausen T.W.; Battaglia Parodi M.; Beheshti M.S.; Bhagavathula A.S.; Bhardwaj N.; Bhardwaj P.; Bhattacharyya K.; Bijani A.; Bikbov M.; Bottone M.; Braithwaite T.M.; Bron A.M.; Burugina Nagaraja S.A.; Butt Z.A.; Caetano dos Santos F.L.L.; Carneiro V.L.J.; Casson R.J.; Cheng C-Y.J.; Choi J-Y.J.; Chu D-T.; Cicinelli M.V.M.; Coelho J.M.G.; Congdon N.G.A.; Couto R.A.A.; Cromwell E.A.M.; Dahlawi S.M.; Dai X.; Dana R.; Dandona L.; Dandona R.A.; Del Monte M.A.; Derbew Molla M.; Dervenis N.A.; Desta A.A.P.; Deva J.P.; Diaz D.; Djalalinia S.E.; Ehrlich J.R.; Elayedath R.R.; Elhabashy H.R.B.; Ellwein L.B.; Emamian M.H.; Eskandarieh S.; Farzadfar F.G.; Fernandes A.G.; Fischer F.S.; Friedman D.S.M.; Furtado J.M.; Gaidhane S.; Gazzard G.; Gebremichael B.; George R.; Ghashghaee A.; Gilani S.A.; Golechha M.; Hamidi S.R.; Hammond B.R.R.; Hartnett M.E.R.K.; Hartono R.K.; Hashi A.I.; Hay S.I.; Hayat K.; Heidari G.; Ho H.C.; Holla R.; Househ M.J.; Huang J.J.E.; Ibitoye S.E.M.; Ilic I.M.D.; Ilic M.D.D.; Ingram A.D.N.; Irvani S.S.N.; Islam S.M.S.; Itumalla R.; Jayaram S.P.; Jha R.P.; Kahloun R.; Kalhor R.; Kandel H.; Kasa A.S.; Kavetskyy T.A.; Kayode G.A.H.; Kempen J.H.; Khairallah M.; Khalilov R.A.; Khan E.A.C.; Khanna R.C.; Khatib M.N.A.; Khoja T.A.E.; Kim J.E.; Kim Y.J.; Kim G.R.; Kisa S.; Kisa A.; Kosen S.; Koyanagi A.; Kucuk Bicer B.; Kulkarni V.P.; Kurmi O.P.; Landires I.C.; Lansingh V.C.L.; Leasher J.L.E.; LeGrand K.E.; Leveziel N.; Limburg H.; Liu X.; Madhava Kunjathur S.; Maleki S.; Manafi N.; Mansouri K.; McAlinden C.G.; Meles G.G.M.; Mersha A.M.; Michalek I.M.R.; Miller T.R.; Misra S.; Mohammad Y.; Mohammadi S.F.A.; Mohammed J.A.H.; Mokdad A.H.; Moni M.A.A.; Montasir A.A.R.; Morse A.R.F.; Mulaw G.F.C.; Naderi M.; Naderifar H.S.; Naidoo K.S.; Naimzada M.D.; Nangia V.; Narasimha Swamy S.M.; Naveed D.M.; Negash H.L.; Nguyen H.L.; Nunez-Samudio V.A.; Ogbo F.A.; Ogundimu K.T.; Olagunju A.T.E.; Onwujekwe O.E.; Otstavnov N.O.; Owolabi M.O.; Pakshir K.; Panda-Jonas S.; Parekh U.; Park E-C.; Pasovic M.; Pawar S.; Pesudovs K.; Peto T.Q.; Pham H.Q.; Pinheiro M.; Podder V.; Rahimi-Movaghar V.; Rahman M.H.U.Y.; Ramulu P.Y.; Rathi P.; Rawaf S.L.; Rawaf D.L.; Rawal L.; Reinig N.M.; Renzaho A.M.; Rezapour A.L.; Robin A.L.; Rossetti L.; Sabour S.; Safi S.; Sahebkar A.; Sahraian M.A.M.; Samy A.M.; Sathian B.; Saya G.K.; Saylan M.A.; Shaheen A.A.A.; Shaikh M.A.T.; Shen T.T.; Shibuya K.S.; Shiferaw W.S.; Shigematsu M.; Shin J.I.; Silva J.C.; Silvester A.A.; Singh J.A.; Singhal D.S.; Sitorus R.S.; Skiadaresi E.Y.; Skryabin V.Y.A.; Skryabina A.A.; Soheili A.B.; Sorrie M.B.A.R.C.; Sousa R.A.R.C.T.; Sreeramareddy C.T.; Stambolian D.G.; Tadesse E.G.; Tahhan N.I.; Tareque M.I.; Topouzis F.X.; Tran B.X.; Tsegaye G.K.; Tsilimbaris M.K.; Varma R.; Virgili G.; Vongpradith A.T.; Vu G.T.; Wang Y.X.; Wang N.H.; Weldemariam A.H.K.; West S.K.G.; Wondmeneh T.G.Y.; Wong T.Y.; Yaseri M.; Yonemoto N.; Yu C.S.; Zastrozhin M.S.; Zhang Z-J.R.; Zimsen S.R.; Resnikoff S.; Vos T.; Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: The Right to Sight: An analysis for the Global Burden of Disease Study. Lancet Glob Health 2021,9(2),e144-e160 - DOI - PubMed
    1. Wong W.L.; Su X.; Li X.; Cheung C.M.G.; Klein R.; Cheng C.Y.; Wong T.Y.; Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: A systematic review and meta-analysis. Lancet Glob Health 2014,2(2),e106-e116 - DOI - PubMed
    1. Guymer R.H.; Campbell T.G.; Age-related macular degeneration. Lancet 2023,401(10386),1459-1472 - DOI - PubMed
    1. Fleckenstein M.; Keenan T.D.L.; Guymer R.H.; Chakravarthy U.; Schmitz-Valckenberg S.; Klaver C.C.; Wong W.T.; Chew E.Y.; Age-related macular degeneration. Nat Rev Dis Primers 2021,7(1),31 - DOI - PubMed

LinkOut - more resources