Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Aug:154:102901.
doi: 10.1016/j.artmed.2024.102901. Epub 2024 Jun 4.

Systematic literature review on reinforcement learning in non-communicable disease interventions

Affiliations

Systematic literature review on reinforcement learning in non-communicable disease interventions

Yanfeng Zhao et al. Artif Intell Med. 2024 Aug.

Abstract

There is evidence that reducing modifiable risk factors and strengthening medical and health interventions can reduce early mortality and economic losses from non-communicable diseases (NCDs). Machine learning (ML) algorithms have been successfully applied to preventing and controlling NCDs. Reinforcement learning (RL) is the most promising of these approaches because of its ability to dynamically adapt interventions to NCD disease progression and its commitment to achieving long-term intervention goals. This paper reviews the preferred algorithms, data sources, design details, and obstacles to clinical application in existing studies to facilitate the early application of RL algorithms in clinical practice research for NCD interventions. We screened 40 relevant papers for quantitative and qualitative analysis using the PRISMA review flow diagram. The results show that researchers tend to use Deep Q-Network (DQN) and Actor-Critic as well as their improved or hybrid algorithms to train and validate RL models on retrospective datasets. Often, the patient's physical condition is the main defining parameter of the state space, while interventions are the main defining parameter of the action space. Mostly, changes in the patient's physical condition are used as a basis for immediate rewards to the agent. Various attempts have been made to address the challenges to clinical application, and several approaches have been proposed from existing research. However, as there is currently no universally accepted solution, the use of RL algorithms in clinical practice for NCD interventions necessitates more comprehensive responses to the issues addressed in this paper, which are safety, interpretability, training efficiency, and the technical aspect of exploitation and exploration in RL algorithms.

Keywords: Clinical practice; Interventions; Machine learning (ML); Non-communicable disease (NCD); Reinforcement learning (RL).

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no conflicts of interest.

Similar articles

Cited by

Publication types

LinkOut - more resources