Systematic literature review on reinforcement learning in non-communicable disease interventions
- PMID: 38838400
- DOI: 10.1016/j.artmed.2024.102901
Systematic literature review on reinforcement learning in non-communicable disease interventions
Abstract
There is evidence that reducing modifiable risk factors and strengthening medical and health interventions can reduce early mortality and economic losses from non-communicable diseases (NCDs). Machine learning (ML) algorithms have been successfully applied to preventing and controlling NCDs. Reinforcement learning (RL) is the most promising of these approaches because of its ability to dynamically adapt interventions to NCD disease progression and its commitment to achieving long-term intervention goals. This paper reviews the preferred algorithms, data sources, design details, and obstacles to clinical application in existing studies to facilitate the early application of RL algorithms in clinical practice research for NCD interventions. We screened 40 relevant papers for quantitative and qualitative analysis using the PRISMA review flow diagram. The results show that researchers tend to use Deep Q-Network (DQN) and Actor-Critic as well as their improved or hybrid algorithms to train and validate RL models on retrospective datasets. Often, the patient's physical condition is the main defining parameter of the state space, while interventions are the main defining parameter of the action space. Mostly, changes in the patient's physical condition are used as a basis for immediate rewards to the agent. Various attempts have been made to address the challenges to clinical application, and several approaches have been proposed from existing research. However, as there is currently no universally accepted solution, the use of RL algorithms in clinical practice for NCD interventions necessitates more comprehensive responses to the issues addressed in this paper, which are safety, interpretability, training efficiency, and the technical aspect of exploitation and exploration in RL algorithms.
Keywords: Clinical practice; Interventions; Machine learning (ML); Non-communicable disease (NCD); Reinforcement learning (RL).
Copyright © 2024 Elsevier B.V. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no conflicts of interest.
Similar articles
-
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4. Cochrane Database Syst Rev. 2021. Update in: Cochrane Database Syst Rev. 2022 May 23;5:CD011535. doi: 10.1002/14651858.CD011535.pub5. PMID: 33871055 Free PMC article. Updated.
-
The Black Book of Psychotropic Dosing and Monitoring.Psychopharmacol Bull. 2024 Jul 8;54(3):8-59. Psychopharmacol Bull. 2024. PMID: 38993656 Free PMC article. Review.
-
Assessing the comparative effects of interventions in COPD: a tutorial on network meta-analysis for clinicians.Respir Res. 2024 Dec 21;25(1):438. doi: 10.1186/s12931-024-03056-x. Respir Res. 2024. PMID: 39709425 Free PMC article. Review.
-
Behavioral interventions to reduce risk for sexual transmission of HIV among men who have sex with men.Cochrane Database Syst Rev. 2008 Jul 16;(3):CD001230. doi: 10.1002/14651858.CD001230.pub2. Cochrane Database Syst Rev. 2008. PMID: 18646068
-
Health professionals' experience of teamwork education in acute hospital settings: a systematic review of qualitative literature.JBI Database System Rev Implement Rep. 2016 Apr;14(4):96-137. doi: 10.11124/JBISRIR-2016-1843. JBI Database System Rev Implement Rep. 2016. PMID: 27532314
Cited by
-
A safe-enhanced fully closed-loop artificial pancreas controller based on deep reinforcement learning.PLoS One. 2025 Jan 27;20(1):e0317662. doi: 10.1371/journal.pone.0317662. eCollection 2025. PLoS One. 2025. PMID: 39869550 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources