Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Jun 19;16(24):31500-31512.
doi: 10.1021/acsami.4c05733. Epub 2024 Jun 6.

Quantum Simulations and Experimental Insights into Glyphosate Adsorption Using Graphene-Based Nanomaterials

Affiliations

Quantum Simulations and Experimental Insights into Glyphosate Adsorption Using Graphene-Based Nanomaterials

Wanderson S Araújo et al. ACS Appl Mater Interfaces. .

Abstract

The increasing global demand for food and agrarian development brings to light a dual issue concerning the use of substances that are crucial for increasing productivity yet can be harmful to human health and the environment when misused. Herein, we combine insights from high-level quantum simulations and experimental findings to elucidate the fundamental physicochemical mechanisms behind developing graphene-based nanomaterials for the adsorption of emerging contaminants, with a specific focus on pesticide glyphosate (GLY). We conducted a comprehensive theoretical and experimental investigation of graphene-based supports as promising candidates for detecting, sensing, capturing, and removing GLY applications. By combining ab initio molecular dynamics and density functional theory calculations, we explored several chemical environments encountered by GLY during its interaction with graphene-based substrates, including pristine and punctual defect regions. Our results unveiled distinct interaction behaviors: physisorption in pristine and doped graphene regions, chemisorption leading to molecular dissociation in vacancy-type defect regions, and complex transformations involving the capture of N and O atoms from impurity-adsorbed graphene, resulting in the formation of new GLY-derived compounds. The theoretical findings were substantiated by FTIR and Raman spectroscopy, which proposed a mechanism explaining GLY adsorption in graphene-based nanomaterials. The comprehensive evaluation of adsorption energies and associated properties provides valuable insights into the intricate nature of these interactions, shedding light on potential applications and guiding future experimental investigations of graphene-based nanofilters for water decontamination.

Keywords: adsorption; density functional theory; glyphosate; graphene; spectroscopy.

PubMed Disclaimer

LinkOut - more resources