Scanorama: integrating large and diverse single-cell transcriptomic datasets
- PMID: 38844552
- PMCID: PMC11361826
- DOI: 10.1038/s41596-024-00991-3
Scanorama: integrating large and diverse single-cell transcriptomic datasets
Abstract
Merging diverse single-cell RNA sequencing (scRNA-seq) data from numerous experiments, laboratories and technologies can uncover important biological insights. Nonetheless, integrating scRNA-seq data encounters special challenges when the datasets are composed of diverse cell type compositions. Scanorama offers a robust solution for improving the quality and interpretation of heterogeneous scRNA-seq data by effectively merging information from diverse sources. Scanorama is designed to address the technical variation introduced by differences in sample preparation, sequencing depth and experimental batches that can confound the analysis of multiple scRNA-seq datasets. Here we provide a detailed protocol for using Scanorama within a Scanpy-based single-cell analysis workflow coupled with Google Colaboratory, a cloud-based free Jupyter notebook environment service. The protocol involves Scanorama integration, a process that typically spans 0.5-3 h. Scanorama integration requires a basic understanding of cellular biology, transcriptomic technologies and bioinformatics. Our protocol and new Scanorama-Colaboratory resource should make scRNA-seq integration more widely accessible to researchers.
© 2024. Springer Nature Limited.
Conflict of interest statement
Competing interests
The authors declare no competing interests.
Figures


Similar articles
-
Enabling scalable single-cell transcriptomic analysis through distributed computing with Apache spark.Sci Rep. 2025 Jul 29;15(1):27713. doi: 10.1038/s41598-025-12897-5. Sci Rep. 2025. PMID: 40731055 Free PMC article.
-
SCIntRuler: guiding the integration of multiple single-cell RNA-seq datasets with a novel statistical metric.Bioinformatics. 2024 Sep 2;40(9):btae537. doi: 10.1093/bioinformatics/btae537. Bioinformatics. 2024. PMID: 39226185 Free PMC article.
-
ScInfeR: an efficient method for annotating cell types and sub-types in single-cell RNA-seq, ATAC-seq, and spatial omics.Brief Bioinform. 2025 May 1;26(3):bbaf253. doi: 10.1093/bib/bbaf253. Brief Bioinform. 2025. PMID: 40471991 Free PMC article.
-
Integration tools for scRNA-seq data and spatial transcriptomics sequencing data.Brief Funct Genomics. 2024 Jul 19;23(4):295-302. doi: 10.1093/bfgp/elae002. Brief Funct Genomics. 2024. PMID: 38267084 Review.
-
Linking single-cell transcriptomes with secretion using SEC-seq.Nat Protoc. 2025 Jul;20(7):2034-2055. doi: 10.1038/s41596-024-01112-w. Epub 2025 Feb 20. Nat Protoc. 2025. PMID: 39979460 Review.
Cited by
-
Harnessing the Power of Single-Cell Large Language Models with Parameter Efficient Fine-Tuning using scPEFT.Res Sq [Preprint]. 2025 Apr 25:rs.3.rs-5926885. doi: 10.21203/rs.3.rs-5926885/v1. Res Sq. 2025. PMID: 40313770 Free PMC article. Preprint.
-
Impact of integration on persistent homology clustering and biological signal detection in scRNA-seq data.bioRxiv [Preprint]. 2025 Jul 29:2025.07.24.666637. doi: 10.1101/2025.07.24.666637. bioRxiv. 2025. PMID: 40766507 Free PMC article. Preprint.
-
Exploration of Conserved Human Adipose Subpopulations Using Targeted Single-Nuclei RNA Sequencing Data Sets.J Am Heart Assoc. 2025 Mar 18;14(6):e038465. doi: 10.1161/JAHA.124.038465. Epub 2025 Mar 17. J Am Heart Assoc. 2025. PMID: 40094187 Free PMC article.
-
RGCN-BA: relational graph convolutional network with batch awareness for single-cell RNA sequencing clustering.Brief Bioinform. 2025 Jul 2;26(4):bbaf378. doi: 10.1093/bib/bbaf378. Brief Bioinform. 2025. PMID: 40728858 Free PMC article.
-
Deep learning imputes DNA methylation states in single cells and enhances the detection of epigenetic alterations in schizophrenia.Cell Genom. 2025 Mar 12;5(3):100774. doi: 10.1016/j.xgen.2025.100774. Epub 2025 Feb 21. Cell Genom. 2025. PMID: 39986279 Free PMC article.