Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Mar;58(3):759-62.
doi: 10.1152/jappl.1985.58.3.759.

A new nuclear magnetic resonance property of lung

A new nuclear magnetic resonance property of lung

A H Morris et al. J Appl Physiol (1985). 1985 Mar.

Abstract

Inflated lung has a nuclear magnetic resonance (NMR) free-induction decay (FID) which is short compared with that of collapsed lung and those of other body tissues. An almost identically short FID is obtained from a slurry of 5-micron alumina particles in water. Interfaces between air and water in lung and between alumina and water in the slurry appear to be the source of spatial internal magnetic inhomogeneities which produce NMR line broadening and the short FID. Paired images that included lung, taken with paired symmetric and asymmetric NMR spin-echo sequences, permit the generation of an image, by subtraction, of the lung isolated from surrounding tissue. These new lung images are neither proton density, T1 (spin-lattice relaxation time), nor T2 (spin-spin relaxation time) images. They complement current NMR images and provide information about regional lung inflation. This previously unrecognized NMR property of lung tissue has potential application in NMR imaging, in quantitative determination of lung water and its distribution, and in the quantitation of regional lung inflation.

PubMed Disclaimer

Publication types

LinkOut - more resources