Bacterial chromatin proteins, transcription, and DNA topology: Inseparable partners in the control of gene expression
- PMID: 38847475
- PMCID: PMC11260248
- DOI: 10.1111/mmi.15283
Bacterial chromatin proteins, transcription, and DNA topology: Inseparable partners in the control of gene expression
Erratum in
-
Correction to "Bacterial Chromatin Proteins, Transcription, and DNA Topology: Inseparable Partners in the Control of Gene Expression".Mol Microbiol. 2025 Feb;123(2):176. doi: 10.1111/mmi.15324. Mol Microbiol. 2025. PMID: 39977300 No abstract available.
Abstract
DNA in bacterial chromosomes is organized into higher-order structures by DNA-binding proteins called nucleoid-associated proteins (NAPs) or bacterial chromatin proteins (BCPs). BCPs often bind to or near DNA loci transcribed by RNA polymerase (RNAP) and can either increase or decrease gene expression. To understand the mechanisms by which BCPs alter transcription, one must consider both steric effects and the topological forces that arise when DNA deviates from its fully relaxed double-helical structure. Transcribing RNAP creates DNA negative (-) supercoils upstream and positive (+) supercoils downstream whenever RNAP and DNA are unable to rotate freely. This (-) and (+) supercoiling generates topological forces that resist forward translocation of DNA through RNAP unless the supercoiling is constrained by BCPs or relieved by topoisomerases. BCPs also may enhance topological stress and overall can either inhibit or aid transcription. Here, we review current understanding of how RNAP, BCPs, and DNA topology interplay to control gene expression.
Keywords: H‐NS; bacterial chromatin; bridging; counter‐silencing; supercoiling; topological barriers; topology; transcription.
© 2024 The Author(s). Molecular Microbiology published by John Wiley & Sons Ltd.
Figures






Similar articles
-
Transcribing RNA polymerases: Dynamics of twin supercoiled domains.Biophys J. 2024 Nov 19;123(22):3898-3910. doi: 10.1016/j.bpj.2024.10.002. Epub 2024 Oct 4. Biophys J. 2024. PMID: 39367604
-
DNA supercoiling-mediated G4/R-loop formation tunes transcription by controlling the access of RNA polymerase.Nat Commun. 2025 Apr 9;16(1):3363. doi: 10.1038/s41467-025-58479-x. Nat Commun. 2025. PMID: 40204744 Free PMC article.
-
Transcription of Bacterial Chromatin.J Mol Biol. 2019 Sep 20;431(20):4040-4066. doi: 10.1016/j.jmb.2019.05.041. Epub 2019 May 31. J Mol Biol. 2019. PMID: 31153903 Free PMC article. Review.
-
DNA topology of highly transcribed operons in Salmonella enterica serovar Typhimurium.Mol Microbiol. 2010 Dec;78(6):1348-64. doi: 10.1111/j.1365-2958.2010.07394.x. Epub 2010 Sep 30. Mol Microbiol. 2010. PMID: 21143310
-
[The bacterial nucleoid].Rev Latinoam Microbiol. 1995 Jul-Sep;37(3):281-90. Rev Latinoam Microbiol. 1995. PMID: 8850347 Review. Spanish.
Cited by
-
Oligomerization-mediated phase separation in the nucleoid-associated sensory protein H-NS is controlled by ambient cues.Protein Sci. 2025 Jan;34(1):e5250. doi: 10.1002/pro.5250. Protein Sci. 2025. PMID: 39660932
-
SMC translocation is unaffected by an excess of nucleoid associated proteins in vivo.Sci Rep. 2025 Jan 19;15(1):2447. doi: 10.1038/s41598-025-86946-4. Sci Rep. 2025. PMID: 39828741 Free PMC article.
-
Nucleoid-associated proteins: molecular mechanisms in microbial adaptation.World J Microbiol Biotechnol. 2025 Jul 28;41(8):277. doi: 10.1007/s11274-025-04419-2. World J Microbiol Biotechnol. 2025. PMID: 40719955 Review.
-
Identification of a novel alternate promoter element in the pheST operon of Escherichia coli.Mol Biol Rep. 2024 Oct 17;51(1):1063. doi: 10.1007/s11033-024-09937-0. Mol Biol Rep. 2024. PMID: 39419865
-
NusG-Spt5 Transcription Factors: Universal, Dynamic Modulators of Gene Expression.J Mol Biol. 2025 Jan 1;437(1):168814. doi: 10.1016/j.jmb.2024.168814. Epub 2024 Oct 5. J Mol Biol. 2025. PMID: 39374889 Free PMC article. Review.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous