This is a preprint.
Targeted TGF-βR2 Knockdown in the Retrotrapezoid Nucleus Mitigates Respiratory Dysfunction and Cognitive Decline in a Mouse Model of Cerebral Amyloid Angiopathy with and without Stroke
- PMID: 38854014
- PMCID: PMC11160887
- DOI: 10.21203/rs.3.rs-4438544/v1
Targeted TGF-βR2 Knockdown in the Retrotrapezoid Nucleus Mitigates Respiratory Dysfunction and Cognitive Decline in a Mouse Model of Cerebral Amyloid Angiopathy with and without Stroke
Update in
-
Targeted TGF-βR2 Silencing in the Retrotrapezoid Nucleus Mitigates Respiratory Dysfunction and Cognitive Decline in a Mouse Model of Cerebral Amyloid Angiopathy with and without Stroke.Transl Stroke Res. 2025 Aug;16(4):1272-1284. doi: 10.1007/s12975-024-01306-0. Epub 2024 Nov 14. Transl Stroke Res. 2025. PMID: 39543011
Abstract
Introduction: Cerebral amyloid angiopathy (CAA) is characterized by the deposition of amyloid-beta peptides within cerebral blood vessels, leading to neurovascular complications. Ischemic strokes result from acute disruptions in cerebral blood flow, triggering metabolic disturbances and neurodegeneration. Both conditions often co-occur and are associated with respiratory dysfunctions. The retrotrapezoid nucleus (RTN), which is crucial for CO2 sensing and breathing regulation in the brainstem, may play a key role in breathing disorders seen in these conditions. This study aims to investigate the role of Transforming Growth Factor Beta (TGF-β) signaling in the RTN on respiratory and cognitive functions in CAA, both with and without concurrent ischemic stroke.
Methods: Adult male Tg-SwDI (CAA model) mice and C57BL/6 wild-type controls underwent stereotaxic injections of lentivirus targeting TGF-β2R2 in the RTN. Stroke was induced by middle cerebral artery occlusion using a monofilament. Respiratory functions were assessed using whole-body plethysmography, while cognitive functions were evaluated through the Barnes Maze and Novel Object Recognition Test (NORT). Immunohistochemical analysis was conducted to measure TGF-βR2 and GFAP expressions in the RTN.
Results: CAA mice exhibited significant respiratory dysfunctions, including reduced respiratory rates and increased apnea frequency, as well as impaired cognitive performance. TGF-βR2 knockdown in the RTN improved respiratory functions and cognitive outcomes in CAA mice. In CAA mice with concurrent stroke, TGF-βR2 knockdown similarly enhanced respiratory and cognitive functions. Immunohistochemistry confirmed reduced TGF-βR2 and GFAP expressions in the RTN following knockdown.
Conclusions: Our findings demonstrate that increased TGF-β signaling and gliosis in the RTN contribute to respiratory and cognitive dysfunctions in CAA and CAA with stroke. Targeting TGF-βR2 signaling in the RTN offers a promising therapeutic strategy to mitigate these impairments. This study is the first to report a causal link between brainstem gliosis and both respiratory and cognitive dysfunctions in CAA and stroke models.
Conflict of interest statement
Disclosures The authors declare no potential conflicts of interest with respect to research, authorship, and/or publication of this article.
Figures
References
Publication types
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous
